NoSQL Databases – Lectures 2017

  • Lecture 1 (2/21/2017): Why NoSQL, Principles, Overview, Course organizationslides
    • content: Motivation for NoSQL databases (Big Data, Big Users, Cloud Computing, Horizontal scalability); Value of Relational databases; General principles of NoSQL databases; Types of NoSQL databases (basic characteristics, uses cases, representatives); One example: Database technologies behind Facebook;
    • covered terms: Big Data (Volume, Velocity, Variety), OLTP/OLAP/RTAP, RDBMS, ACID, Aggregate-oriented data models, Key-value stores, Document databases, Column-family stores, Graph databases
  • Lecture 2 (2/28/2017): Distributed Computing with MapReduceslides
    • content: Distributed File Systems, Google File System (GFS), MapReduce programming model; MapReduce Framework; Apache Hadoop ecosystem; Apache Spark
    • covered terms: Distributed File Systems: GFS, chunk server; MapReduce: Map, Combine, Grouping/Shuffling, Reduce; Hadoop Distributed File System (NameNode, DataNode, HeartBeat, BlockReport); Apache YARN, JobTracker, TaskTracker
  • Lecture 3 (3/7/2017): Principles of NoSQL Databases: Data Model, Distribution & Consistencyslides
    • content: Basic Principles of NoSQL Databases – Aggregate data model, horizontal scaling, relaxing consistency; Models of Data Distribution; Consistency in databases, transactions; Relaxing consistency in distributed databases – theories and techniques; relaxing durability;
    • covered terms: aggregate data model, vertical/horizontal scalability (scaling up/out), sharding, replication (master-slave, peer-to-peer), read/write/replication consistency, CAP Theorem, eventual consistency, BASE, Quorums
  • Lecture 4 (3/21/2017): Distributed Key-value Storesslides
    • content: Key challenges and solutions: data sharding, data balancing, replica management, management of nodes; Comparison of Individual Stores: features to consider, connecting to database;Fundamentals; Suitable Use Cases; Basic Example (Riak)
    • covered terms: Amazon Dynamo, consistent hashing, virtual nodes, version stamps (counter, GUID, hash, timestamp), vector stamps (Lamport timestamps, vector clocks, version vectors, matrix clocks), anti-entropy, read repair, gossip protocols, two-phase commit protocol (2PC), multi-version concurrency control (MVCC), levels of isolation, skew write anomaly