

Distributed environment

● Pros: Performance
● Cons: ACID - hard to comply

○ Atomicity
○ Consistency
○ Isolation
○ Durability

etcd = /etc distributed

● Key-Value storage
● Consistency
● High Availability
● Failure tolerant
● Cluster Configuration

● /config
○ /database

● /feature-flags
○ /verbose-logging
○ /redesign

etcd

● open source developed by CoreOS
● written in Go
● durable
● watchable
● exposed via HTTP
● runtime reconfigurable

Cluster Architecture

Node 1 Node 2

Node 3

etcd etcd

etcdClient
etcdctl / HTTP API

port 2380

port 2379

Basic Features - SET

Command line interface - etcdctl

$ etcdctl set /nosql/foo bar
bar

HTTP API

$ curl -L -X PUT http://localhost:2379/v2/keys/nosql/foo -
d value="bar"

{"action":"set","node":{"key":"/nosql/foo","value":"bar","
modifiedIndex":23995,"createdIndex":23995}}

Basic Features - LIST

Command line interface - etcdctl

$ etcdctl ls /nosql
/nosql/foo

HTTP API

$ curl -L http://localhost:2379/v2/keys/nosql

{"action":"get","node":{"key":"/nosql","dir":true,"nodes":
[{"key":"/nosql/foo","value":"bar","modifiedIndex":23931,"
createdIndex":23931}],"modifiedIndex":282,"createdIndex":
282}}

Basic Features - GET

Command line interface - etcdctl

$ etcdctl get /nosql/foo
bar

HTTP API

$ curl -L http://localhost:2379/v2/keys/nosql/foo

{"action":"get","node":{"key":"/nosql/foo","value":"bar","
modifiedIndex":23931,"createdIndex":23931}}

Basic Features - WATCH

Command line interface - etcdctl

$ etcdctl watch --recursive /web-service/backends
...

HTTP API

$ curl -L http://localhost:2379/v2/keys/web-service/backends
?wait=true&recursive=true

...

Atomic Compare and Swap

Command line interface - etcdctl

$ etcdctl set --swap-with-value 'two' /foo three

Error: 101: Compare failed ([two != one]) [31627]

HTTP API

$ curl http://localhost:2379/v2/keys/foo?prevValue=two -XPUT
-d value=three

{"errorCode":101,"message":"Compare failed","cause":"[two !=
one]","index":31642}

Cluster Availability

Available

Cluster Availability

Available

Cluster Availability

Available

Cluster Availability

Unavailable

Raft

The understandable distributed consensus protocol

Distributed = “a lot” of nodes
Consensus = Agreement

Raft

Data replication

Leader election

Distributed Locks

Three roles:

RAFT

The Leader

RAFT

The Follower

RAFT

The Candidate

High level example:
Leader Election

RAFT - Leader election

F

F

F

RAFT - Leader election

C

F

F

RAFT - Leader election

C

F

F

Vote for me

Vote for me

RAFT - Leader election

C

F

F

Ok!

Ok!

RAFT - Leader election

L

F

F

LogEntries
& Heartbeat

LogEntries
& Heartbeat

RAFT - Leader election

X

F

F

RAFT - Leader election

X

F

F

C

Vote for me

RAFT - Leader election

X

F

F

C

Ok!

RAFT - Leader election

X

F

F

L

LogEntries
& Heartbeat

High level example:
Log Replication

(with network partitions)

RAFT - Log Replication

F

L

F

F

F

t(ms)

0 200 400 600 800 1000

0ms

1 “much”

A new uncommitted log entry is added to the leader

RAFT - Log Replication

F

L

F

F

F

1 “much”

t(ms)

0 200 400 600 800 1000

10ms

1 “much”

1 “much”

1 “much”

1 “much”
Append
Entries

On the next heartbeat, the entry is replicated to the followers

RAFT - Log Replication

F

L

F

F

F

1 “much”

t(ms)

0 200 400 600 800 1000

1 “much”

1 “much”

1 “much”

1 “much”
OK!

The followers acknowledge the entry and the entry is committed

25ms

RAFT - Log Replication

F

L

F

F

F

1 “much”

t(ms)

0 200 400 600 800 1000

1 “much”

1 “much”

1 “much”

1 “much”
Append
entries

On the next heartbeat, the committed entry is replicated to the followers

40ms

RAFT - Log Replication

F

L

F

F

F

1 “much”

t(ms)

0 200 400 600 800 1000

1 “much”

1 “much”

1 “much”

1 “much”

On the next heartbeat, the committed entry is replicated to the followers

50ms

RAFT - Log Replication

F

L

F

F

F

1 “much”

t(ms)

0 200 400 600 800 1000

1 “much”

1 “much”

1 “much”

1 “much”

A network partition makes a majority of nodes inaccessible
from the leader

60ms

RAFT - Log Replication

F

L

F

F

F

1 “much”

t(ms)

0 200 400 600 800 1000

1 “much”

1 “much”

1 “much”

2 “wow”

1 “much”

A new log entry is added to the leader

70ms

RAFT - Log Replication

F

L

F

F

F

1 “much”

2 “wow”

t(ms)

0 200 400 600 800 1000

1 “much”

1 “much”

1 “much”

2 “wow”

1 “much”

The leader replicates the entry to the only accessible follower

80ms

Append Entries

RAFT - Log Replication

F

L

F

F

F

1 “much”

2 “wow”

t(ms)

0 200 400 600 800 1000

1 “much”

1 “much”

1 “much”

2 “wow”

1 “much”

The follower acknowledges the entry but there is not a quorum

85ms

OK!

RAFT - Log Replication

F

L

F

F

F

1 “much”

2 “wow”

t(ms)

0 200 400 600 800 1000

1 “much”

1 “much”

1 “much”

2 “wow”

1 “much”

90ms

RAFT - Log Replication

C

L

F

F

F

1 “much”

2 “wow”

t(ms)

0 200 400 600 800 1000

1 “much”

1 “much”

1 “much”

2 “wow”

1 “much”

After an election timeout, one disconnected follower becomes
a candidate

190ms

Request vote

RAFT - Log Replication

L

L

F

F

F

1 “much”

2 “wow”

t(ms)

0 200 400 600 800 1000

1 “much”

1 “much”

1 “much”

2 “wow”

1 “much”

The candidate receives a majority of votes and becomes a leader

195ms

Vote granted

RAFT - Log Replication

L

L

F

F

F

1 “much”

2 “wow”

t(ms)

0 200 400 600 800 1000

1 “much”

1 “much”

1 “much”

2 “wow”

1 “much”

200ms

RAFT - Log Replication

L

L

F

F

F

1 “much”

2 “wow”

t(ms)

0 200 400 600 800 1000

1 “much”

1 “much”

1 “much”

2 “wow”

1 “much”

2 “cool”

A log entry is added to the new leader

210ms

RAFT - Log Replication

L

L

F

F

F

1 “much”

2 “wow”

t(ms)

0 200 400 600 800 1000

1 “much”

2 “cool”

1 “much”

2 “cool”

1 “much”

2 “wow”

1 “much”

2 “cool”

The log entry is replicated to the accessible followers

220ms

Append entries

RAFT - Log Replication

L

L

F

F

F

1 “much”

2 “wow”

t(ms)

0 200 400 600 800 1000

1 “much”

2 “cool”

1 “much”

2 “cool”

1 “much”

2 “wow”

1 “much”

2 “cool”

A majority of nodes acknowledge the entry so it becomes committed

225ms

OK!

RAFT - Log Replication

L

L

F

F

F

1 “much”

2 “wow”

t(ms)

0 200 400 600 800 1000

1 “much”

2 “cool”

1 “much”

2 “cool”

1 “much”

2 “wow”

1 “much”

2 “cool”

On the next heartbeat, the followers are notified the entry is committed

240ms

Append entries

RAFT - Log Replication

L

L

F

F

F

1 “much”

2 “wow”

t(ms)

0 200 400 600 800 1000

1 “much”

2 “cool”

1 “much”

2 “cool”

1 “much”

2 “wow”

1 “much”

2 “cool”

The network recovers and there is no longer a partition

255ms

RAFT - Log Replication

L

L

F

F

F

1 “much”

2 “wow”

t(ms)

0 200 400 600 800 1000

1 “much”

2 “cool”

1 “much”

2 “cool”

1 “much”

2 “wow”

1 “much”

2 “cool”

The new leader sends a heartbeat on the next heartbeat timeout

260ms

Append entries

RAFT - Log Replication

L

L

F

F

F

1 “much”

2 “wow”

t(ms)

0 200 400 600 800 1000

1 “much”

2 “cool”

1 “much”

2 “cool”

1 “much”

2 “wow”

1 “much”

2 “cool”

The leader of term #1 steps down after seeing a new leader in term #2

260ms

Append entries

F

RAFT - Log Replication

L

L

F

F

F

1 “much”

t(ms)

0 200 400 600 800 1000

1 “much”

2 “cool”

1 “much”

2 “cool”

1 “much”

1 “much”

2 “cool”

Uncommitted entries from disconnected nodes are discarded

260ms

Append entries

F

RAFT - Log Replication

L

L

F

F

F

1 “much”

2 “cool”

t(ms)

0 200 400 600 800 1000

1 “much”

2 “cool”

1 “much”

2 “cool”

1 “much”

2 “cool”

1 “much”

2 “cool”

New log entries are appended to the previously disconnected nodes

260ms

Append entries

F

RAFT - Log Replication

L

L

F

F

F

1 “much”

2 “cool”

t(ms)

0 200 400 600 800 1000

1 “much”

2 “cool”

1 “much”

2 “cool”

1 “much”

2 “cool”

1 “much”

2 “cool”

260ms

F

Bootstrapping the Cluster

● mandatory configuration options
○ listen-peer-urls

default: http://localhost:2380

○ listen-client-urls
default: http://localhost:2379

○ advertise-client-urls
default: http://localhost:2379

○ initial-advertise-peer-urls
default: http://localhost:2380

Static

● initial-cluster
infra0=http://10.0.1.10:2380,
infra1=http://10.0.1.11:2380,
infra2=http://10.0.1.12:2380

Bootstrapping the Cluster - Discovery URL

90293c90

_config/size=5

https://discovery.etcd.io/new?size=5

discovery=https://discovery.etcd.io/90293c59191021d1c27ebd9eda963f47

https://discovery.etcd.io/new?size=5
https://discovery.etcd.io/new?size=5

Bootstrapping the Cluster - Discovery URL

https://discovery.etcd.io/90293c59191021d1c27ebd9eda963f47

90293c90
/state

_config/size=5

KEY VALUE INDEX

state started 5890

n0 10.0.1.10 5891

Bootstrapping the Cluster - Discovery URL

https://discovery.etcd.io/90293c59191021d1c27ebd9eda963f47

90293c90
/state

_config/size=5

KEY VALUE INDEX

state started 5890

n0 10.0.1.10 5891

n1 10.0.1.11 5898

Bootstrapping the Cluster - Discovery URL

https://discovery.etcd.io/90293c59191021d1c27ebd9eda963f47

● When member list size meets expected value, the list is used to bootstrap
every node like initial-cluster option in static bootstraping method

● Election process
● Cluster is ready

Managing cluster size at runtime

List cluster members
$ etcdctl member list

Add cluster member
$ etcdctl member add <name> <peerURL>

Remove cluster member
$ etcdctl member remove <name>

Comparison with similar technologies

● Zookeeper
● Consul
● Doozer

Similarities

● Consistent and durable general-purpose K/V store across distributed
system

● Based on Paxos or Raft algorithm to quickly converge to a consistent state
after disconnecting one of nodes

● Paxos vs. Raft

Zookeeper vs etcd (1)

● Zookeeper is the oldest project from
compared databases

○ Mature and has big number of client bindings, tools
and API’s.

○ Few years back there was no alternative

● Written in Java
○ Zookeeper is more resource hungry than any other

databases

Zookeeper vs etcd (2)

● Zookeeper is more complex than etcd
○ Harder to maintain
○ It’s harder to configure

● Zookeeper uses Zab
○ implementation of Paxos
○ Zab designed for primary-backup

systems rather than for state machine
replication

Consul vs etcd (1)

● Written in GO
● Consul has more high level

○ Consul implements a full service discovery
system in the library

○ DNS server interface, allowing to perform
service lookups using the DNS protocol

● Uses RAFT, but different implementation
than etcd

● etcd is older then Consul

Consul vs etcd (2)

● HTTP+JSON based API, Curl-able
● Internals of consul are not public http:

//www.consul.io/docs/internals/index.
html

http://www.consul.io/docs/internals/index.html
http://www.consul.io/docs/internals/index.html
http://www.consul.io/docs/internals/index.html
http://www.consul.io/docs/internals/index.html

Doozer vs. etcd (1)

● Written in GO, created by Heroku
before etcd

● Not developed anymore
○ has big number of forks

● Doozer implements own Paxos
algorithm

Doozer vs. etcd (2)

● Splitted into client (doozer) and server
(doozerd)

● ACL permissions are not implemented

Who is using etcd ?

Fleet by CoreOS

Distributed init system

Kubernetes by Google

● container cluster manager
● etcd takes care of storing and replicating data used by Kubernetes across

the entire cluster

Cloud foundry

● cache for information about where and how processes are running within
the container runtime

● discovery mechanism for some components.

Many more: 500+ projects on github are using etcd

etcd by CoreOS

● Distributed Key-Value store
● Raft consensus protocol
● High Availability and Failure tolerant
● https://coreos.com/etcd/
● https://github.com/coreos/etcd

Thank you

https://coreos.com/etcd/
https://coreos.com/etcd/
https://github.com/coreos/etcd
https://github.com/coreos/etcd

