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Quick overview

Fast & Distributed
Document-Based with JSON
Schema-less

Fulltext on top of Apache Lucine

RESTful interface



python

See the official Elasticsearch Python client.
. elasticsearch-dsl-py chainable query and filter construction built on top of offical client.
pyelasticsearch: Python client.
ESClient: A lightweight and easy to use Python client for Elasticsearch.

« rawes: Python low level client.

. elasticutils: A friendly chainable Elasticsearch interface for Python.
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. Surfiki Refine: Python Map-Reduce engine targeting Elasticsearch indices.
. pyes: Python client.

ruby

See the official Elasticsearch Ruby client.

«  Retire: Ruby APl & DSL, with ActiveRecord/ActiveModel integration (retired since Sep
2013).

o I—l | | P R E | f | APl «  stretcher: Ruby client.
u «  elastic_searchable: Ruby client + Rails integration.

. Flex: Ruby Client.

»  elastics: Tiny client with built-in zero-downtime migrations and ActiveRecord integration.

. h
. N at I Ve J ava A P | Spee thepofﬁcial Elasticsearch PHP client.

»  Elastica: PHP client.

. elasticsearch PHP client.

. Sherlock: PHP client, one-to-one mapping with query DSL, fluid interface.
«  elasticsearch PHP 5.3 client

* Client available for many -
languages. R

« Thereis of course the native ES Java client

javascript

See the official Elasticsearch JavaScript client.

. Elastic.js: A JavaScript implementation of the Elasticsearch Query DSL and Core API.
» node-elasticsearch-client: A Node]S client for Elasticsearch.
«  node-elastical: Node.js client for the Elasticsearch REST API

. elastics: Simple tiny client that just works

.het

See the official Elasticsearch .NET client.

. PlainElastic.Net: .NET client.
. ElasticSearch.NET: .NET client.



Distributed

Multiple nodes running in single cluster
Data are split into shards (# configurable)

e Zero or more replicas (guaranteed to be on
different node)

Self-managing cluster

* Automatic master detection (including failover)



INnstallation

Requires Java

Download from http://elasticsearch.org

Extract the archive
Run SELASTIC HOME/bin/elasticsearch

Notice the name of started node.


http://elasticsearch.org

How do we use I1t7

e We will see on next few slides

* You can also try it yourself

. http://54.93.34.39/


http://54.93.34.39/

|_ogical Structure

Relational Systems Elastic Search
 Database * |Index

 Jable * e Jype

* Row * Document

e Column e Field



INndex documents

e Use HITP PUT method to store a new document

curl -XPUT localhost:9200/dba/question/42 -d
'"{ "Title": "How to 1ndex a document." }'

e Use HTTP POST method to store a new version of document

curl -XPOST localhost:9200/dba/question/42 -d
'"{ "Title": "How to change a document." }'



Get & Delete documents

e Use HTTP GET method to store a new document

curl -XGET localhost:9200/dba/question/42

e Use HITP DELETE method to delte a document

curl -XDELETE localhost:9200/dba/question/42



Search the data

* Query-String searching

curl -XGET localhost:9200/dba/question/ search
?g=title:elasticsearch

 More powerful search DSL

curl -XGET localhost:9200/dba/question/ search -d
'
"query": {
"query string": {
"query": "nosgl OR title:elasticsearch"
}
J
} 1
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Queries

How well does a document match specified criteria
match

* Query specified field for a string match
multi_match

o Query multiple fields for the same match
match_phrase

e Query for an exact phase
match_all

 Match all documents
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Filters

Yes or No guestion on the fields

term

* Does a field exactly match given term?

range

* |s number in specified range”

exists / missing

* |s there a non-null field with specified name?

Much more is available (see the Filter DSL docs)
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Filters + Queries

“Search for all questions about NoSQL asked
this year.”
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curl -XGET localhost:9200/dba/question/ search -d
'

"query": {
"filtered": {
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"took": 88, = Execution time

"timed out": false,
" shards": {
"total": 5,
"successful": 5,
"failed": O
Y
"hits": { < Information about the search
"total": 893, <« Number of matched documents
"max score'": 2.4688244, < Rating of document with best match
"hits": |
{
" _index": "dba", <« Where is the document stored

" type": “question", «———— What is the type of matched doc
" id": “59043",
" score": 2.4688244, «— Relevance score of this document
" source": { < The document itself

"author": {

"name": "Lucas Kauffman",
"id": 5030

Y
"rating": O,
"bOdy": ". . .",
"tags": [
"nosql"
1,
"comments": [],
"title": "Elasticsearch: Versioning a document on revisions"

I
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Aggregations

» Collecting analytic information about your data
e Metrics

 Compute metrics over sets of documents

* \What is the average rating of guestions about NoSQL?
e Bucketing

 Aggregates documents into buckets

« How many question are there for each tag”
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Aggregations (example)

curl -XGET localhost:9200/dba/question/ search -d
{
"fields": ["aggregations"],
"aggs': |
"distribution": {
"terms": |
"field": "tags",
"size": 4
J
J
J
J
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"aggregations": {
"distribution": {
"doc count error upper bound": 537,
"sum other doc count": 56869,




Relationsnips

ElasticSearch provides 2 types of mechanisms
* Nested Documents
* Index time join
 Efficiently stored in Lucine
* Use case: “Comments” on “Post”
* Paren/ Child documents
e Query time join
* Links documents based on parent / child id
* One-to-Many / Many-to-One relation

e User case: “Answers” to “Question”
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Schema-less

ES will dynamically index any new field
Type of the field will be guessed
Often we know our data, at least partially

Can we use this knowledge?
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Mapping

 Define how ES searches our data
 Completely optional

e Data must be re-indexed after mapping change
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Mapping (continued)

* Analysers (stop words, language, not analysed)
* Feld types

» Specify document relationships

curl -XGET localhost:9200/dba/answer/ mapping
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"answer": {

" parent": { "type": "question" },e«—— Parent document type
"properties": { < Field mappings
"accepted": { "type": "boolean" },
"author": {
"properties": {
"id": { "type": "long" 1},
"name": { "type": "string" }
}
b
"body": { "type": "string" 1},
"comments": {
"type": "nested", « Index as nested documents
"properties": {
"author": { .. },
"body": { "type": "string" 1},
"creation date": {
"type": "date",
"format": "dateOptionalTime"
b
"rating": { "type": "long" }
}
}
"creation date": { .. },
"rating": { "type": "long"} This field is of type long
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Any questions”



