Flastic Search

Jakub Cechadek & Andrej Galad

Quick overview

Fast & Distributed
Document-Based with JSON
Schema-less

Fulltext on top of Apache Lucine

RESTful interface

python

See the official Elasticsearch Python client.
. elasticsearch-dsl-py chainable query and filter construction built on top of offical client.
pyelasticsearch: Python client.
ESClient: A lightweight and easy to use Python client for Elasticsearch.

« rawes: Python low level client.

. elasticutils: A friendly chainable Elasticsearch interface for Python.

']

]

. Surfiki Refine: Python Map-Reduce engine targeting Elasticsearch indices.
. pyes: Python client.

ruby

See the official Elasticsearch Ruby client.

« Retire: Ruby APl & DSL, with ActiveRecord/ActiveModel integration (retired since Sep
2013).

o I—l | | P R E | f | APl « stretcher: Ruby client.
u « elastic_searchable: Ruby client + Rails integration.

. Flex: Ruby Client.

» elastics: Tiny client with built-in zero-downtime migrations and ActiveRecord integration.

. h
. N at I Ve J ava A P | Spee thepofﬁcial Elasticsearch PHP client.

» Elastica: PHP client.

. elasticsearch PHP client.

. Sherlock: PHP client, one-to-one mapping with query DSL, fluid interface.
« elasticsearch PHP 5.3 client

* Client available for many -
languages. R

« Thereis of course the native ES Java client

javascript

See the official Elasticsearch JavaScript client.

. Elastic.js: A JavaScript implementation of the Elasticsearch Query DSL and Core API.
» node-elasticsearch-client: A Node]S client for Elasticsearch.
« node-elastical: Node.js client for the Elasticsearch REST API

. elastics: Simple tiny client that just works

.het

See the official Elasticsearch .NET client.

. PlainElastic.Net: .NET client.
. ElasticSearch.NET: .NET client.

Distributed

Multiple nodes running in single cluster
Data are split into shards (# configurable)

e Zero or more replicas (guaranteed to be on
different node)

Self-managing cluster

* Automatic master detection (including failover)

INnstallation

Requires Java

Download from http://elasticsearch.org

Extract the archive
Run SELASTIC HOME/bin/elasticsearch

Notice the name of started node.

http://elasticsearch.org

How do we use I1t7

e We will see on next few slides

* You can also try it yourself

. http://54.93.34.39/

http://54.93.34.39/

|_ogical Structure

Relational Systems Elastic Search
 Database * |Index

 Jable * e Jype

* Row * Document

e Column e Field

INndex documents

e Use HITP PUT method to store a new document

curl -XPUT localhost:9200/dba/question/42 -d
'"{ "Title": "How to 1ndex a document." }'

e Use HTTP POST method to store a new version of document

curl -XPOST localhost:9200/dba/question/42 -d
'"{ "Title": "How to change a document." }'

Get & Delete documents

e Use HTTP GET method to store a new document

curl -XGET localhost:9200/dba/question/42

e Use HITP DELETE method to delte a document

curl -XDELETE localhost:9200/dba/question/42

Search the data

* Query-String searching

curl -XGET localhost:9200/dba/question/ search
?g=title:elasticsearch

 More powerful search DSL

curl -XGET localhost:9200/dba/question/ search -d
'
"query": {
"query string": {
"query": "nosgl OR title:elasticsearch"
}
J
} 1

10

Queries

How well does a document match specified criteria
match

* Query specified field for a string match
multi_match

o Query multiple fields for the same match
match_phrase

e Query for an exact phase
match_all

 Match all documents

11

Filters

Yes or No guestion on the fields

term

* Does a field exactly match given term?

range

* |s number in specified range”

exists / missing

* |s there a non-null field with specified name?

Much more is available (see the Filter DSL docs)

12

Filters + Queries

“Search for all questions about NoSQL asked
this year.”

13

curl -XGET localhost:9200/dba/question/ search -d
'

"query": {
"filtered": {

14

"took": 88, = Execution time

"timed out": false,
" shards": {
"total": 5,
"successful": 5,
"failed": O
Y
"hits": { < Information about the search
"total": 893, <« Number of matched documents
"max score'": 2.4688244, < Rating of document with best match
"hits": |
{
" _index": "dba", <« Where is the document stored

" type": “question", «———— What is the type of matched doc
" id": “59043",
" score": 2.4688244, «— Relevance score of this document
" source": { < The document itself

"author": {

"name": "Lucas Kauffman",
"id": 5030

Y
"rating": O,
"bOdy": ". . .",
"tags": [
"nosql"
1,
"comments": [],
"title": "Elasticsearch: Versioning a document on revisions"

I

15

Aggregations

» Collecting analytic information about your data
e Metrics

 Compute metrics over sets of documents

* \What is the average rating of guestions about NoSQL?
e Bucketing

 Aggregates documents into buckets

« How many question are there for each tag”

16

Aggregations (example)

curl -XGET localhost:9200/dba/question/ search -d
{
"fields": ["aggregations"],
"aggs': |
"distribution": {
"terms": |
"field": "tags",
"size": 4
J
J
J
J

17

"aggregations": {
"distribution": {
"doc count error upper bound": 537,
"sum other doc count": 56869,

Relationsnips

ElasticSearch provides 2 types of mechanisms
* Nested Documents
* Index time join
 Efficiently stored in Lucine
* Use case: “Comments” on “Post”
* Paren/ Child documents
e Query time join
* Links documents based on parent / child id
* One-to-Many / Many-to-One relation

e User case: “Answers” to “Question”

19

Schema-less

ES will dynamically index any new field
Type of the field will be guessed
Often we know our data, at least partially

Can we use this knowledge?

20

Mapping

 Define how ES searches our data
 Completely optional

e Data must be re-indexed after mapping change

21

Mapping (continued)

* Analysers (stop words, language, not analysed)
* Feld types

» Specify document relationships

curl -XGET localhost:9200/dba/answer/ mapping

22

"answer": {

" parent": { "type": "question" },e«—— Parent document type
"properties": { < Field mappings
"accepted": { "type": "boolean" },
"author": {
"properties": {
"id": { "type": "long" 1},
"name": { "type": "string" }
}
b
"body": { "type": "string" 1},
"comments": {
"type": "nested", « Index as nested documents
"properties": {
"author": { .. },
"body": { "type": "string" 1},
"creation date": {
"type": "date",
"format": "dateOptionalTime"
b
"rating": { "type": "long" }
}
}
"creation date": { .. },
"rating": { "type": "long"} This field is of type long

23

Any questions”

