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Motivation & Fundamentals Similarity Search: Effectiveness and Efficiency

Similarity Searching

The similarity is key to human cognition, learning, memory. . .

[cognitive psychology]
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Computers should be able to search data based on similarity

The similarity search problem has two aspects
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The similarity search problem has two aspects

effectiveness: how to measure similarity of two “objects”

domain specific (data- and application-specific, context dependent, . . . )
photos, video, X-rays, voice, music, EEG, MTR, texts, . . .

efficiency: how to realize similarity search fast

using a given data + similarity measure
on very large data collections
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Motivation & Fundamentals Similarity Search: Effectiveness and Efficiency

Efficiency: Motivation Example

Example of data:

general images (photos)

every image processed by a deep convolutional neural network

to obtain a visual characterization of the image (feature)
compared by Euclidean distance to measure generic visual similarity
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Motivation & Fundamentals Similarity Search: Effectiveness and Efficiency

Efficiency: Motivation Example

Example of data:

general images (photos)

every image processed by a deep convolutional neural network

to obtain a visual characterization of the image (feature)
compared by Euclidean distance to measure generic visual similarity

Efficiency problem:

20 million of images with such descriptors

each descriptor is a 4096-dimensional float vector (16 kB)

⇒ over 320 GB of data to be organized for similarity search

answer similarity queries online
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Motivation & Fundamentals Similarity Search: Effectiveness and Efficiency

Outline of the Talk

1 Motivation & Fundamentals
Similarity Search: Effectiveness and Efficiency

2 Indexing & Searching in Metric Spaces
Metric-based Model of Similarity
Overview and Principles
Voronoi Partitioning

3 Specific Similarity Indexes
M-Index
PPP-Codes

4 Deep Convolutional Neural Networks
and their applications in image recognition

5 Visual Search Demo
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Indexing & Searching in Metric Spaces Metric-based Model of Similarity

Metric-based Model of Similarity

We model the data as metric space (D, δ), where D is a domain of
objects and δ is a total distance function δ : D ×D −→ R+

0 satisfying
the following postulates ∀x , y , x ∈ D:

identity: δ(x , x) = 0
symmetry: δ(x , y) = δ(y , x)
triangle inequality: δ(x , y) ≤ δ(x , z) + δ(z , y)

Objective: organize data collection X ⊆ D, resolve query by example
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We model the data as metric space (D, δ), where D is a domain of
objects and δ is a total distance function δ : D ×D −→ R+

0 satisfying
the following postulates ∀x , y , x ∈ D:

identity: δ(x , x) = 0
symmetry: δ(x , y) = δ(y , x)
triangle inequality: δ(x , y) ≤ δ(x , z) + δ(z , y)

Objective: organize data collection X ⊆ D, resolve query by example

range query R(q, r) returns all
objects x ∈ X with δ(q, x) ≤ r

k-NN(q) query returns k objects
x ∈ X with the smallest δ(q, x)
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Indexing & Searching in Metric Spaces Metric-based Model of Similarity

Metric vs. Other Models

Metric model of similarity

is very generic

applicable to many data types + similarity functions

we can build one index structure and apply many times

in some cases, we can even omit the triangle inequality (see below)

On the other hand

techniques for specific similarity are often more efficient

e.g. cosine similarity used with vector space model in IR
the inverted file indexes are very convenient for sparse vectors

But the distance-based indexing is often able to capture intrinsic
complexity of the similarity space

ignoring unnecessary external “dimensions” of the data
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Indexing & Searching in Metric Spaces Metric-based Model of Similarity

Examples of Metric Spaces

Vector data:

Lp metrics (Minkowski distances)

L1 – Manhattan (city block) distance L1(x , y) =
n∑

i=1

|xi − yi |

L2 – Euclidean distance L2(x , y) =

√
n∑

i=1

(xi − yi )2

L∞ – Chebyshev distance L∞(x , y) =
n

max
i=1
|xi − yi |

quadratic form (Mahalanobis) δ(x , y) =
(
(x − y)T ·M · (x − y)

) 1
2

where M is a matrix n × n

cosine distance 1− cos(x , y)

does NOT fulfill triangle inequality

if required, use angular similarity 1− cos−1 cos(x,y)
π

Hamming distance (on vectors over a finite field, e.g. binary vectors)
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Indexing & Searching in Metric Spaces Metric-based Model of Similarity

Examples of Metric Spaces (2)

Strings:

edit distance (Levenshtein distance)

minimum number of insertions, deletions or substitutions

Sets:

Jaccard’s coefficient δ(X ,Y ) = 1− X∩Y
X∪Y

Hausdorff distance

for sets with elements related by another distance

Other types of data:

Earth mover’s distance (for histograms)

Tree Edit distance

Signature Quadratic Form distance, etc.
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Indexing & Searching in Metric Spaces Overview and Principles

Problem Formulation and Overview

Objective: Preprocess and organize collection of objects X ⊆ D in such a
way that similarity queries are processed efficiently

collections can be very large

computation of distance function δ can be expensive

Two decades of research in this area

theoretical principles identified

static and dynamic memory structures for precise similarity search

efficient disk-oriented techniques

precise and approximate (not all objects from k-NN answer returned)

distributed processing
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Indexing & Searching in Metric Spaces Overview and Principles

Space Partitioning

Key and fundamental task of indexing is to partition the collection

But in metric space

the objects do not have any dimensions to partition the space
there is no “absolute” ordering of the objects
just with respect to some object
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Indexing & Searching in Metric Spaces Voronoi Partitioning

Voronoi Partitioning

Partitioning using a fixed set of reference objects (pivots)

Let us have a set of n pivots {p1, . . . , pn}

Voronoi cell Ci = all objects for
which pivot pi is the closest
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Indexing & Searching in Metric Spaces Voronoi Partitioning

Recursive Voronoi Partitioning

Let us use the same set of n pivots p1, . . . , pn recursively

Partition each Ci using the other pivots p1, . . . , pi−1, pi+1, . . . , pn
Ci ,j = objects for which pi is the closest and pj the second closest

this principle can be used l-times recursively up to level l = n
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Indexing & Searching in Metric Spaces Voronoi Partitioning

Pivot Permutations

A different point of view: (prefixes of) pivot permutations

Given object x ∈ X , order the pivots according to distances δ(x , pi )
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Indexing & Searching in Metric Spaces Voronoi Partitioning

Pivot Permutations

A different point of view: (prefixes of) pivot permutations

Given object x ∈ X , order the pivots according to distances δ(x , pi )

Let Πx be a permutation on the set of pivot indexes {1, . . . , n}
such that Πx(j) is index of the j-th closest pivot from x

for example, Πx(1) is index of the closest pivot from x
pΠx (j) is the j-the closest pivot from x

Πx is denoted as pivot permutation (PP) with respect to x .
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Indexing & Searching in Metric Spaces Voronoi Partitioning

Correspondence between Voronoi partitioning and PPs

Recursive Voronoi partitioning to level l

Cell C〈i1,...,il 〉 contains objects x for
which

Πx(1) = i1, Πx(2) = i2, . . . ,Πx(l) = il

l-tuple 〈i1, . . . , il〉 is an l-prefix of pivot permutation Πx

pivot permutation prefix (PPP)
there is one-to-one correspondence between “Voronoi cell” and “PPP”
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Specific Similarity Indexes M-Index

M-Index Indexing Structure

Specific Voronoi-based indexes: M-Index, Distributed M-Index, PPP-Codes

M-Index: basic properties

uses dynamic recursive Voronoi partitioning (see below)

it defines a (hash) mapping from the metric space to (float) numbers

data either in memory or on disk (continuous chunks)

both precise and approximate similarity search

Novak, D. and Batko, M. (2009). Metric Index: An Efficient and Scalable Solution for
Similarity Search. In Proceedings of SISAP ’09, (pp. 65–73). IEEE Comput. Soc. Press.

Novak, D., Batko, M. and Zezula, P. (2011). Metric Index: An Efficient and Scalable

Solution for Precise and Approximate Similarity Search. Inform. Syst., 36(4), 721–733.
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Novak, D., Batko, M. and Zezula, P. (2011). Metric Index: An Efficient and Scalable

Solution for Precise and Approximate Similarity Search. Inform. Syst., 36(4), 721–733.
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Specific Similarity Indexes M-Index

M-Index Mapping Function
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integral part of the key
identification of the cell

fractional part of the key

position within the cell

distance from the closest pivot
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Specific Similarity Indexes M-Index

M-Index with Dynamic Level
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partition only those cells that exceed certain capacity

pick a maximum level 1 ≤ lmax ≤ n

a kind of dynamic hashing, similar to extensible hashing

it is a locality sensitive hashing for generic distance spaces
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Specific Similarity Indexes M-Index

M-Index: Precise Query Evaluation Strategy

The precise query evaluation gives guarantees to return all results

for both range query R(q, r) and k-NN queries

search principle: filter & refine

filter out parts of index that cannot contain query relevant objects
for objects x ∈ X that cannot
be filtered out, calculate δ(q, x)
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search principle: filter & refine

filter out parts of index that cannot contain query relevant objects
for objects x ∈ X that cannot
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M-Index employs practically all known
metric principles of space pruning and
filtering

triangle inequality required
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the search must still access and refine about 30–50% of the data

for collections with high intrinsic dimensionality (dimensionality curse)
for R(q, r) and k-NN queries with reasonable r and k
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Specific Similarity Indexes M-Index

Approximate Strategy for M-Index

p
3

p
2

p
4

p
1

C3,2

C2,1

C1,2

C4,3

4,1C

q

C3,4

1,3C

C1,4

C2,3C3,1

0.2

0.3

0.25

0.5

determine cells with a high chance
to contain relevant objects

use query-pivot distances
δ(q, p1), δ(q, p2), . . . , δ(q, pn)

estimate “distances” between the
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=⇒ rank the Voronoi cells (data)
with respect to the query

measure quality of k-NN approximate search by recall = precision

recall(A) =
|A ∩ AP |

k
· 100%
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Specific Similarity Indexes M-Index

M-Index Approximate Strategy: Brief Evaluation
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Specific Similarity Indexes PPP-Codes

Standard Similarity Search Approach

standard approach to large-scale approximate search (e.g. M-Index):

dataset X is partitioned and stored

disk storage
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Standard Similarity Search Approach

standard approach to large-scale approximate search (e.g. M-Index):

dataset X is partitioned and stored

given query q, the “most-promising” partitions form the candidate set

the candidate set SC is refined by calculating δ(q, x), ∀x ∈ SC

majority of the search costs:

reading and refinement of SC

=⇒ accuracy of the candidate set
is key

disk storage
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Specific Similarity Indexes PPP-Codes

PPP-Code: The Core Idea

the Voronoi cells span large areas of the space

given a query, the “close” cells contain also distant data objects

actually, far more distant objects than the close ones

having several independent “orthogonal” partitionings

the relevant objects should be in close cells of “all” partitionings
the distant objects in close cells vary

aggregate the candidate sets from individual partitionings so that
objects that appear “often” on top positions are ranked high
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Specific Similarity Indexes PPP-Codes

PPP-Code: The Core Idea

the Voronoi cells span large areas of the space

given a query, the “close” cells contain also distant data objects

actually, far more distant objects than the close ones

having several independent “orthogonal” partitionings

the relevant objects should be in close cells of “all” partitionings
the distant objects in close cells vary

aggregate the candidate sets from individual partitionings so that
objects that appear “often” on top positions are ranked high

Novak, D. and Zezula, P. Rank Aggregation of Candidate Sets for Efficient Similarity Search. In
Proceedings of 25th Inter. Conf. on Database and Expert Systems Applications (DEXA 2014)

Best paper of DEXA 2014 Award.
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Specific Similarity Indexes PPP-Codes

PPP-Codes in a Nutshell

1 data space is partitioned multiple-times by recursive Voronoi

2 based on these partitionings, objects are mapped onto memory codes
a dynamic memory index is created using these codes

3 given query q, multiple ranked candidate sets are generated

4 these candidate rankings are merged using median of individual ranks
the merged candidate set is smaller and more accurate

5 the final candidate set is retrieved and refined
object-by-object, objects stored in a ID-object store
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Specific Similarity Indexes PPP-Codes

Candidate Aggregation Principle

Given query q, Voronoi cells from each of the λ partitioning are ranked

λ candidate rankings ψj
q of object IDs to be aggregated

q ∈ D

ψq
1:  {x  y1 y2}  {y3 y4 y5}  {y6} ...

ψq
2:  {y3 y2}  {y1 y4 y6 y7} {x  y8} ...

ψq
3:  {x} {y3 y4 y5}  {y2 y6} ...

ψq
4:  {y1 y2} {y3 y4 y5}  {y8}  {y6} ...

ψq
5:  {y1 y2 } {y4 y5} {y3} {x  y7} ...

objects with the rank '1'

rank '2'
rank '3'
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Specific Similarity Indexes PPP-Codes

Candidate Aggregation Principle

Given query q, Voronoi cells from each of the λ partitioning are ranked

λ candidate rankings ψj
q of object IDs to be aggregated

final rank of object x is p-percentile (e.g. median) of its λ ranks

Ψp(q, x) = percentilep(ψ1
q(x), ψ2

q(x), . . . , ψλq (x))

q ∈ D

ψq
1:  {x  y1 y2}  {y3 y4 y5}  {y6} ...

ψq
2:  {y3 y2}  {y1 y4 y6 y7} {x  y8} ...

ψq
3:  {x} {y3 y4 y5}  {y2 y6} ...

ψq
4:  {y1 y2} {y3 y4 y5}  {y8}  {y6} ...

ψq
5:  {y1 y2 } {y4 y5} {y3} {x  y7} ...

objects with the rank '1'

Ψ0.5 (q, x) = percentile0.5{1, 1, 3, 4, ?} = 3 

rank '2'
rank '3'
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Specific Similarity Indexes PPP-Codes

Evaluation 1: Accuracy of the Candidate Set

How many candidate objects are needed to achieve certain recall level
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Evaluation 1: Accuracy of the Candidate Set
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Specific Similarity Indexes PPP-Codes

Evaluation 2: Overall Efficiency
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shrinking the candidate set size by one or two orders of magnitude

while preserving the answer quality
the larger the data collection, the lower the percentage
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shrinking the candidate set size by one or two orders of magnitude
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the larger the data collection, the lower the percentage
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Deep Convolutional Neural Networks and their applications in image recognition

Deep Convolutional Neural Networks

a separate Google docs presentation
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https://docs.google.com/presentation/d/1Kbir5ZQhwke8M1Cn3L6tNAvGH55G4pzGmos5qI9FjaA/edit?usp=sharing


Visual Search Demo

Online Demonstration

Demonstration of large-scale image visual search

20 million images from a photo stock company

features from deep convolutional neural networks

4096-dimensional vectors with L2 distance

collection was recently released for research purposes

http://disa.fi.muni.cz/profiset/

PPP-Codes index (1 GB in memory, 124 GB on the SSD disk)

http://disa.fi.muni.cz/demos/profiset-decaf/

front-end temporarily running at
http://cybela12.fi.muni.cz:8888/demos/profiset-decaf/

Novak, D., Batko. M. and Zezula, P. (2015). Large-scale Image Retrieval using Neural Net

Descriptors. Presented at SIGIR 2015.
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