Metric Indexes based on Recursive Voronoi Partitioning

David Novak and Pavel Zezula

Laboratory of Data Intensive Systems and Applications (DISA)
Masaryk University, Brno, Czech Republic

Spring 2015
http://disa.fi.muni.cz/
Outline of the Talk

1. Motivation: Efficiency of Similarity Search

2. Metric Data Partitioning
 - Fundamentals
 - Voronoi Partitioning

3. M-Index
 - Principles
 - Precise and Approximate Search
 - M-Index Related Pieces of Work

4. PPP-Codes
 - Data Encoding and Searching
 - Efficiency Evaluation
 - Visual Search Demo
Motivation

- The similarity is key to human cognition, learning, memory. . .

[cognitive psychology]
Motivation

- The similarity is key to human cognition, learning, memory... [cognitive psychology]
- everything we can see, hear, measure, observe is in digital form
Motivation

- The **similarity is key** to human cognition, learning, memory...
 [cognitive psychology]
- everything we can see, hear, measure, observe **is** in digital form
- Computers should be able to **search** data based on **similarity**
Motivation

- The *similarity is key* to human cognition, learning, memory... [cognitive psychology]
- *everything* we can see, hear, measure, observe is in *digital* form
- Computers should be able to *search* data based on *similarity*

The *similarity search problem* has two aspects

- **effectiveness**: how to *measure* similarity of two “objects”
 - *domain specific* (photos, X-rays, voice, music, EEG, MTR...)

Novak, Zezula (DISA Lab, MU Brno) Voronoi-based Metric Indexes Spring 2015
Motivation

- The similarity is key to human cognition, learning, memory...
 [cognitive psychology]
- everything we can see, hear, measure, observe is in digital form
- Computers should be able to search data based on similarity

The similarity search problem has two aspects

- **effectiveness**: how to measure similarity of two “objects”
 - domain specific (photos, X-rays, voice, music, EEG, MTR...)

- **efficiency**: how to realize similarity search fast
 - using a given data + similarity measure
 - on very large data collections
Efficiency: Motivation Example

Example of data:

- general **images** (photos)
- every image **processed** by a deep convolutional **neural network**
 - to obtain a **visual characterization** of the image (descriptor)
 - compared by Euclidean distance to measure **visual similarity**
Motivation: Efficiency of Similarity Search

Efficiency: Motivation Example

Example of data:

- general images (photos)
- every image processed by a deep convolutional neural network to obtain a visual characterization of the image (descriptor)
- compared by Euclidean distance to measure visual similarity
Efficiency: Motivation Example

Example of data:

- general images (photos)
- every image processed by a deep convolutional neural network
 - to obtain a visual characterization of the image (descriptor)
 - compared by Euclidean distance to measure visual similarity
Efficiency: Motivation Example

Example of data:

- general **images** (photos)
- every image **processed** by a deep convolutional **neural network**
 - to obtain a **visual characterization** of the image (descriptor)
 - compared by Euclidean distance to measure **visual similarity**

Efficiency problem:

- **20 million** of images with such descriptors
- each descriptor is a 4096-dimensional float vector
- **⇒** over 320 GB of data to be **organized** for similarity **search**
 - **answer** similarity queries **online**
Distance-based Similarity Search

- generic similarity search
 - applicable to many domains
- data modeled as metric space \((\mathcal{D}, \delta)\), where \(\mathcal{D}\) is a domain of objects and \(\delta\) is a total distance function \(\delta : \mathcal{D} \times \mathcal{D} \rightarrow \mathbb{R}_0^+\) satisfying postulates of identity, symmetry, and triangle inequality
Distance-based Similarity Search

- generic similarity search
 - applicable to many domains
- data modeled as metric space \((\mathcal{D}, \delta)\), where \(\mathcal{D}\) is a domain of objects and \(\delta\) is a total distance function \(\delta : \mathcal{D} \times \mathcal{D} \rightarrow \mathbb{R}^+_0\) satisfying postulates of identity, symmetry, and triangle inequality
- query by example: \(k\text{-NN}(q)\) returns \(k\) objects \(x\) from the dataset \(\mathcal{X} \subseteq \mathcal{D}\) with the smallest \(\delta(q, x)\)
Distance-based Similarity Search

- generic similarity search
 - applicable to many domains
- data modeled as metric space \((\mathcal{D}, \delta)\), where \(\mathcal{D}\) is a domain of objects and \(\delta\) is a total distance function \(\delta : \mathcal{D} \times \mathcal{D} \rightarrow \mathbb{R}^+_0\) satisfying postulates of identity, symmetry, and triangle inequality

- query by example: \(k\text{-NN}(q)\) returns \(k\) objects \(x\) from the dataset \(\mathcal{X} \subseteq \mathcal{D}\) with the smallest \(\delta(q, x)\)

- dataset \(\mathcal{X}\) may be very large
- function \(\delta\) may be time consuming
In metric space, there is no absolute order of the objects, no coordinates,...
Voronoi Partitioning

In metric space, there is no absolute order of the objects, no coordinates,...

- Dataset partitioning is done using reference objects (pivots)
Voronoi Partitioning

In metric space, there is no absolute order of the objects, no coordinates,...

- Dataset partitioning is done using reference objects (pivots)
- Let us have a fixed set of \(n \) pivots \(\{p_1, \ldots, p_n\} \)

- Voronoi cell \(C_i = \) all objects for which pivot \(p_i \) is the closest
Recursive Voronoi Partitioning

- Let us use the same set of n pivots p_1, \ldots, p_n recursively.
Recursive Voronoi Partitioning

- Let us use the same set of n pivots p_1, \ldots, p_n recursively

- Partition each C_i using the other pivots $p_1, \ldots, p_{i-1}, p_{i+1}, \ldots, p_n$
Recursive Voronoi Partitioning

- Let us use the same set of n pivots p_1, \ldots, p_n recursively.
- Partition each C_i using the other pivots $p_1, \ldots, p_{i-1}, p_{i+1}, \ldots, p_n$.
- $C_{i,j} =$ objects for which p_i is the closest and p_j the second closest.
Recursive Voronoi Partitioning

- Let us use the same set of n pivots p_1, \ldots, p_n recursively.

- Partition each C_i using the other pivots $p_1, \ldots, p_{i-1}, p_{i+1}, \ldots, p_n$

- $C_{i,j}$ = objects for which p_i is the closest and p_j the second closest
 - this principle can be used l-times recursively up to level $l = n$
Pivot Permutations

A different point of view: (prefixes of) pivot permutations

- For each object \(x \in \mathcal{X} \), order the pivots according to distances \(\delta(x, p_i) \)
A different point of view: (prefixes of) pivot permutations

- For each object $x \in X$, order the pivots according to distances $\delta(x, p_i)$

- Let Π_x be a permutation on the set of pivot indexes $\{1, \ldots, n\}$ such that $\Pi_x(j)$ is index of the j-th closest pivot from x
 - for example, $\Pi_x(1)$ is index of the closest pivot from x
 - $p_{\Pi_x(j)}$ is the j-the closest pivot from x
Pivot Permutations

A different point of view: (prefixes of) pivot permutations

- For each object $x \in \mathcal{X}$, order the pivots according to distances $\delta(x, p_i)$

- Let Π_x be a permutation on the set of pivot indexes $\{1, \ldots, n\}$ such that $\Pi_x(j)$ is index of the j-th closest pivot from x
 - for example, $\Pi_x(1)$ is index of the closest pivot from x
 - $p_{\Pi_x(j)}$ is the j-the closest pivot from x

- Formally: Π_x is permutation on $\{1, \ldots, n\}$ such that $\forall i : 1 \leq i < n$:
 \[\delta(x, p_{\Pi_x(i)}) < \delta(x, p_{\Pi_x(i+1)}) \]
Pivot Permutations

A different point of view: (prefixes of) pivot permutations

- For each object $x \in X$, order the pivots according to distances $\delta(x, p_i)$

- Let Π_x be a permutation on the set of pivot indexes $\{1, \ldots, n\}$ such that $\Pi_x(j)$ is index of the j-th closest pivot from x
 - for example, $\Pi_x(1)$ is index of the closest pivot from x
 - $p_{\Pi_x(j)}$ is the j-the closest pivot from x

- Formally: Π_x is permutation on $\{1, \ldots, n\}$ such that $\forall i : 1 \leq i < n$:
 $$\delta(x, p_{\Pi_x(i)}) < \delta(x, p_{\Pi_x(i+1)})$$

- Π_x is denoted as pivot permutation (PP) with respect to x.
Correspondence between Voronoi partitioning and PPs

- **Recursive** Voronoi partitioning to level l
- Cell $C_{\langle i_1, \ldots, i_l \rangle}$ contains objects x for which

$$\Pi_x(1) = i_1, \ \Pi_x(2) = i_2, \ldots, \Pi_x(l) = i_l$$
Correspondence between Voronoi partitioning and PPs

- **Recursive** Voronoi partitioning to level \(l \)
- **Cell** \(C_{\langle i_1, \ldots, i_l \rangle} \) contains objects \(x \) for which
 \[
 \Pi_x(1) = i_1, \quad \Pi_x(2) = i_2, \ldots, \quad \Pi_x(l) = i_l
 \]

- \(l \)-tuple \(\langle i_1, \ldots, i_l \rangle \) is an \(l \)-prefix of pivot permutation \(\Pi_x \)
 - pivot permutation prefix (PPP)
 - terms “Voronoi cell” and “PPP” correspond to each other
M-Index Indexing Structure

Our specific Voronoi indexes: M-Index, Distributed M-Index, PPP-Codes
M-Index Indexing Structure

Our specific Voronoi indexes: M-Index, Distributed M-Index, PPP-Codes

M-Index: basic properties

- uses **dynamic recursive** Voronoi partitioning (details later)
- it defines a (hash) **mapping** from the metric space to (float) numbers
- data either in memory or **on disk** (continuous chunks)
- both precise and **approximate** similarity search
M-Index Indexing Structure

Our specific Voronoi indexes: M-Index, Distributed M-Index, PPP-Codes

M-Index: basic properties

- uses dynamic recursive Voronoi partitioning (details later)
- it defines a (hash) mapping from the metric space to (float) numbers
- data either in memory or on disk (continuous chunks)
- both precise and approximate similarity search

M-Index Mapping Function

integral part of the key
- identification of the cell

fractional part of the key
- position within the cell
- distance from the closest pivot

example with \(n = 4 \) and \(l = 2 \)
M-Index Mapping Function

integral part of the key
- identification of the cell
fractional part of the key
- position within the cell
- distance from the closest pivot

\[
key_I(x) = \delta(p_{\Pi_x(1)}, x) + \sum_{i=1}^{l} (\Pi_x(i) - 1) \cdot n^{(l-i)}
\]

domain of \(\delta\) normalized to \([0, 1)\)
size of the key domain: \(n^l\)

example with \(n = 4\) and \(l = 2\)
M-Index with Dynamic Level

- partition **only** those cells that exceed certain capacity
- pick a **maximum level** $1 \leq l_{\text{max}} \leq n$

The key formula becomes:

$$key_l(x) = d(p, \Pi x(1), x) + \sum_{i=1}^{l_{\text{max}}} (\Pi x(i) - 1) \cdot n(l_{\text{max}} - i)$$
M-Index with Dynamic Level

- partition **only** those cells that exceed certain capacity
- pick a **maximum level** \(1 \leq l_{\text{max}} \leq n \)
- the \(key_l \) formula becomes:

\[
key_l(x) = d(p_{\Pi_x(1)}, x) + \sum_{i=1}^{l} (\Pi_x(i) - 1) \cdot n^{(l_{\text{max}}-i)}
\]
M-Index: Precise Range Query Evaluation

Precise evaluation of range query $R(q, r)$ employs practically all known metric principles of space pruning and filtering:
M-Index: Precise Range Query Evaluation

Precise evaluation of range query $R(q, r)$ employs practically all known metric principles of space pruning and filtering:

- **double-pivot** distance constraint
 - skip accessing of Voronoi cell C_i if
 \[
 \delta(q, p_i) - \delta(q, p_{\Pi_q(1)}) > 2 \cdot r
 \]
 - use hyperplane between pivot p_i and $q_{\Pi_q(1)}$
 - apply l-times for cell C_{i_1, \ldots, i_l}
M-Index: Precise Range Query Evaluation

Precise evaluation of range query \(R(q, r) \) employs practically all known metric principles of space pruning and filtering:

- **double-pivot** distance constraint
 - skip accessing of Voronoi cell \(C_i \) if
 \[
 \delta(q, p_i) - \delta(q, p_{\Pi_q(1)}) > 2 \cdot r
 \]
 - use hyperplane between pivot \(p_i \) and \(q_{\Pi_q(1)} \)
 - apply \(l \)-times for cell \(C_{i_1, \ldots, i_l} \)

- **range-pivot** distance constraint
 - each leaf cell \(C_{i_1, \ldots, i_l} \) stores \(r_{\min} \) and \(r_{\max} \) as min and max of distances
 \[\{ \delta(x, p_{i_1}) | x \in C_{i_1, \ldots, i_l} \}\]
 - skip accessing of cell \(C_{i_1, \ldots, i_l} \) if
 \[
 \delta(q, p_{i_1}) + r < r_{\min} \quad \text{or} \quad \delta(q, p_{i_1}) - r > r_{\max}
 \]
M-Index: Precise Range Query Evaluation (cont.)

- **object-pivot** distance constraint
 - the fractional part of an M-Index key is an object-pivot distance
 - for range query $R(q, r)$ identify interval of keys in cell $C_{i_1, ..., i_l}$

 \[
 [\delta(q, p_{i_1}) - r, \delta(q, p_{i_1}) + r]
 \]
M-Index: Precise Range Query Evaluation (cont.)

- **object-pivot distance constraint**
 - the fractional part of an M-Index key is an object-pivot distance
 - for range query $R(q, r)$ identify interval of keys in cell C_{i_1,\ldots,i_l}
 $$[\delta(q, p_{i_1}) - r, \delta(q, p_{i_1}) + r]$$

- **pivot filtering**
 - store distances $\delta(x, p_1), \ldots, \delta(x, p_n)$ together with each object x
 - skip computation of $\delta(q, x)$ at query time if
 $$\max_{i \in \{1,\ldots,n\}} |\delta(q, p_i) - \delta(x, p_i)| > r$$
M-Index Precise Strategy: Brief Evaluation

- Dataset: CoPhIR (Content-based Photo Information Retrieval)
 - combination of five MPEG-7 descriptors
 - 280 dimensions altogether, weighted sum of partial distances
M-Index Precise Strategy: Brief Evaluation

- **Dataset:** CoPhIR (Content-based Photo Information Retrieval)
 - combination of five MPEG-7 descriptors
 - 280 dimensions altogether, weighted sum of partial distances

![Graph showing data volume accessed for kNN(q, 50)]

- dataset size: 100,000
- dynamic M-Index: $l_{\text{max}} = 5$
M-Index Precise Strategy: Brief Evaluation

- Dataset: CoPhIR (Content-based Photo Information Retrieval)
 - combination of five MPEG-7 descriptors
 - 280 dimensions altogether, weighted sum of partial distances

- Data volume accessed for kNN(q, 50)
 - 20000
 - 40000
 - 60000
 - 80000
 - 100000

- # of pivots

- M−Index level 1
- M−Index level 2
- M−Index level 3
- Dynamic M−Index

- # of accessed objects

- dataset size: 100,000

- dynamic M-Index: \(l_{\text{max}} = 5 \)

- 20 pivots
Approximate Strategy for M-Index

- Determine order in which to visit individual cells
- Estimate “distances” between the query and the Voronoi cells (PPPs)
Approximate Strategy for M-Index

- Determine **order** in which to visit individual cells
- Estimate “distances” **between** the query and the Voronoi cells (PPPs)
- query q is represented by distances $\delta(q, p_1), \delta(q, p_2), \ldots, \delta(q, p_n)$
Approximate Strategy for M-Index

- Determine order in which to visit individual cells
- Estimate “distances” between the query and the Voronoi cells (PPPs)
- query \(q \) is represented by distances \(\delta(q, p_1), \delta(q, p_2), \ldots, \delta(q, p_n) \)

- each Voronoi cell is assigned a “penalty” with respect to \(q \)

\[
\text{penalty}(C_{i_1,\ldots,i_l}) = \sum_{j=1}^{l} \max \{ \delta(p_{i_j}, q) - \delta(p_{\Pi_q(j)}, q), 0 \}
\]
Approximate Strategy: Other Options

- another natural option is to represent the query by its Voronoi cell
- and to estimate “distances” between the Voronoi cells (PPPs)
Approximate Strategy: Other Options

- another natural option is to represent the query by its Voronoi cell
- and to estimate “distances” between the Voronoi cells (PPPs)
Approximate Strategy: Other Options

- another natural option is to represent the query by its Voronoi cell
- and to estimate “distances” between the Voronoi cells (PPPs)
- Kendall Tau, Spearman Footrule distance, Spearman Rho, …
Approximate Strategy: Other Options

- another natural option is to represent the query by its Voronoi cell
- and to estimate “distances” between the Voronoi cells (PPPs)
- Kendall Tau, Spearman Footrule distance, Spearman Rho, …

- using richer information for the query than for data is worth
M-Index Approximate Strategy: Brief Evaluation

- dataset of 100,000 objects
M-Index Approximate Strategy: Brief Evaluation

- **dataset of 100,000 objects**
- **algorithm accesses 10,000 objects**
M-Index Related Pieces of Work

- **Distributed indexes**: M-Chord (preliminary), distributed M-Index
M-Index Related Pieces of Work

- **Distributed** indexes: M-Chord (preliminary), distributed M-Index

- M-Index defines a **locality-sensitive hashing function** for metric spaces
M-Index Related Pieces of Work

- **Distributed** indexes: M-Chord (preliminary), distributed M-Index

- **M-Index** defines a **locality-sensitive hashing function** for metric spaces

- **Multiple** independent M-Indexes to improve the search (LSH style)
Standard Similarity Search Approach

standard approach to large-scale approximate search (e.g. M-Index):
- dataset \mathcal{X} is partitioned and stored
Standard Similarity Search Approach

standard approach to large-scale approximate search (e.g. M-Index):

- dataset \mathcal{X} is partitioned and stored
- given query q, the “most-promising” partitions form the candidate set
Standard Similarity Search Approach

standard approach to large-scale approximate search (e.g. M-Index):

- dataset X is partitioned and stored
- given query q, the “most-promising” partitions form the candidate set
- the candidate set S_C is refined by calculating $\delta(q, x)$, $\forall x \in S_C$
standard approach to large-scale approximate search (e.g. M-Index):

- dataset \mathcal{X} is partitioned and stored
- given query q, the “most-promising” partitions form the candidate set
- the candidate set S_C is refined by calculating $\delta(q, x)$, $\forall x \in S_C$

majority of the search costs:

- reading and refinement of S_C
Standard Similarity Search Approach

standard approach to large-scale approximate search (e.g. M-Index):

- dataset \mathcal{X} is partitioned and stored
- given query q, the “most-promising” partitions form the candidate set
- the candidate set S_C is refined by calculating $\delta(q, x)$, $\forall x \in S_C$

majority of the search costs:

- reading and refinement of S_C

\implies accuracy of the candidate set is key
PPP-Codes in a Nutshell

1. data space is partitioned multiple-times independently
 - each partitioning is defined by one pivot space (recursive Voronoi)
PPP-Codes in a Nutshell

1. data space is partitioned multiple-times independently
 - each partitioning is defined by one pivot space (recursive Voronoi)

2. based on these partitionings, objects are mapped onto memory codes

PPP-Codes in a Nutshell

1. data space is partitioned multiple-times independently
 - each partitioning is defined by one pivot space (recursive Voronoi)

2. based on these partitionings, objects are mapped onto memory codes

3. given query \(q \), multiple ranked candidate sets are generated
PPP-Codes in a Nutshell

1. data space is partitioned multiple-times independently
 - each partitioning is defined by one pivot space (recursive Voronoi)

2. based on these partitionings, objects are mapped onto memory codes

3. given query q, multiple ranked candidate sets are generated

4. these candidate rankings are effectively merged
 - the merged candidate set is smaller and more accurate
PPP-Codes in a Nutshell

1. data space is **partitioned multiple-times** independently
 - each partitioning is defined by one pivot space (recursive Voronoi)

2. based on these partitionings, **objects** are mapped onto **memory codes**

3. given query \(q \), **multiple ranked candidate sets** are generated

4. these **candidate rankings** are effectively **merged**
 - the **merged candidate set** is **smaller** and more **accurate**

5. the final **candidate set** is **retrieved and refined**

Best paper of DEXA 2014 Award.

Novak, Zezula (DISA Lab, MU Brno)
PPP-Codes in a Nutshell

1. data space is partitioned multiple-times independently
 - each partitioning is defined by one pivot space (recursive Voronoi)

2. based on these partitionings, objects are mapped onto memory codes

3. given query q, multiple ranked candidate sets are generated

4. these candidate rankings are effectively merged
 - the merged candidate set is smaller and more accurate

5. the final candidate set is retrieved and refined

Best paper of DEXA 2014 Award.
Space Partitioning and Data Encoding

PPP-Codes define λ independent recursive Voronoi-like space partitionings
PPP-Codes define λ independent recursive Voronoi-like space partitionings.

Each data object $x \in \mathcal{X}$ is encoded by position in these diagrams:

$$PPP\text{-}Code_{i}^{1..\lambda}(x) = \langle \Pi_{x}^{1}(1..l), \ldots, \Pi_{x}^{\lambda}(1..l) \rangle.$$

where $\Pi_{x}^{j}(1..l)$ is the l-prefix of the j-th pivot permutation of object x.
PPP-Code Index

We build a trie-like structure for each pivot space

- the memory trie contains only the PPP-Codes and object IDs
- with a focus is on memory optimization

![Diagram of trie-like structure](image)

Given query \(q \), Voronoi cells from each partitioning (trie) are ranked in a similar way as for M-Index result: \(\lambda \) independent candidate rankings of object IDs
PPP-Code Index

We build a trie-like structure for each pivot space
- the memory trie contains only the PPP-Codes and object IDs
- with a focus is on memory optimization

Given query q, Voronoi cells from each partitioning (trie) are ranked
- in a similar way as for M-Index
- result: λ independent candidate rankings of object IDs
Candidate set Identification

- λ rankings ψ^j_q of IDs are aggregated into the final ranking
Candidate set Identification

- \(\lambda \) rankings \(\psi_q^j \) of IDs are aggregated into the final ranking

\[
q \in D
\]

objects with the rank '1'

\[
\psi_q^1: \{x \ y_1 \ y_2\} \ \{y_3 \ y_4 \ y_5\} \ \{y_6\} \ ...
\]

rank '2'

\[
\psi_q^2: \{y_3 \ y_2\} \ \{y_1 \ y_4 \ y_6 \ y_7\} \ \{x \ y_8\} \ ...
\]

rank '3'

\[
\psi_q^3: \{x\} \ \{y_3 \ y_4 \ y_5\} \ \{y_2 \ y_6\} \ ...
\]

\[
\psi_q^4: \{y_1 \ y_2\} \ \{y_3 \ y_4 \ y_5\} \ \{y_8\} \ \{y_6\} \ ...
\]

\[
\psi_q^5: \{y_1 \ y_2\} \ \{y_4 \ y_5\} \ \{y_3\} \ \{x \ y_7\} \ ...
\]
Candidate set Identification

- \(\lambda \) rankings \(\psi^j_q \) of IDs are **aggregated into the final ranking**
- ranking of object \(x \) is \(p \)-percentile (e.g. median) of its \(\lambda \) ranks

\[
\Psi_p(q, x) = \text{percentile}_p(\psi^1_q(x), \psi^2_q(x), \ldots, \psi^\lambda_q(x))
\]

\(q \in D \)

objects with the rank '1'

\(\psi^1_q \): \{x, \ y_1, \ y_2\} \{y_3, \ y_4, \ y_5\} \{y_6\} ...

\(\psi^2_q \): \{y_3, \ y_2\} \{y_1, \ y_4, \ y_6, \ y_7\} \{x, \ y_8\} ...

\(\psi^3_q \): \{x\} \{y_3, \ y_4, \ y_5\} \{y_2, \ y_6\} ...

\(\psi^4_q \): \{y_1, \ y_2\} \{y_3, \ y_4, \ y_5\} \{y_8\} \{y_6\} ...

\(\psi^5_q \): \{y_1, \ y_2\} \{y_4, \ y_5\} \{y_3\} \{x, \ y_7\} ...

\[
\Psi_{0.5}(q, x) = \text{percentile}_{0.5}\{1, 1, 3, 4, ?\} = 3
\]
Idea Behind the Rank Aggregation

- The **Voronoi cells** span large areas of the space
Idea Behind the Rank Aggregation

- the Voronoi cells span large areas of the space
- given a query, the “close” cells contain also distant data objects
 - actually, far more distant objects than close ones
Idea Behind the Rank Aggregation

- the **Voronoi cells** span large areas of the space
- given a query, the “close” **cells contain** also **distant** data objects
 - actually, far more **distant objects** than close ones
- having **several** “orthogonal” partitionings
 - the **query-relevant** objects are at top positions of “all” partitionings
 - the **distant** objects at top positions **vary**
Idea Behind the Rank Aggregation

- The Voronoi cells span large areas of the space.
- Given a query, the "close" cells contain also distant data objects.
 - Actually, far more distant objects than close ones.
- Having several "orthogonal" partitionings.
 - The query-relevant objects are at top positions of "all" partitionings.
 - The distant objects at top positions vary.
- The percentile-based aggregation increases probability that query-relevant objects are ranked higher than the distant ones.
Overall schema of the PPP-Codes **search algorithm**

1. **calculate** $\lambda \cdot n$ query-pivot distances $\delta(q, p_i^j)$
2. **PPPRank**(q, p, R): merge λ ranks to get top R objects
3. **GetNextIDs**$(q, 1)$: generate ψ_q^1 ranking
 GetNextIDs$(q, 2)$: generate ψ_q^2 ranking
 GetNextIDs(q, λ): generate ψ_q^λ ranking
4. **retrieve** R objects
5. **refine** R objects by $\delta(q, x)$

k-best objects

Novak, Zezula (DISA Lab, MU Brno)
Overall schema of the PPP-Codes search algorithm

1. \(k\)-NN(q)
2. PPPRank(q,p,R): merge \(\lambda\) ranks to get top \(R\) objects
3. GetNextIDs(q,\(\lambda\)): generate \(\psi^\lambda_q\) ranking
4. retrieve \(R\) objects
5. refine \(R\) objects by \(\delta(q,x)\)

- individual steps run in separate threads
- requires a fast ID-object storage (SSD or distributed)
Evaluation 1: Accuracy of the Candidate Set

How many candidate objects are needed to achieve certain recall level
Evaluation 1: Accuracy of the Candidate Set

How many candidate objects are needed to achieve certain recall level

![Graph showing candidate set size R necessary to achieve 80% of 1-NN recall]

Candidate set size R necessary to achieve 80% of 1-NN recall

Settings: 1M CoPhIR dataset, $l = 8$ and $p = 0.75$
Evaluation 2: Overall Efficiency

candidate set size R vs. recall and time

<table>
<thead>
<tr>
<th>R</th>
<th>1-NN recall</th>
<th>10-NN recall</th>
<th>50-NN recall</th>
<th>Search time [ms]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Recall and search time while increasing candidate set size R.

Settings: 100M CoPhIR dataset, $n = 512$, $l = 8$, $\lambda = 5$, $p = 0.5$ (3rd rank out of 5).

Novak, Zezula (DISA Lab, MU Brno)
Evaluation 2: Overall Efficiency

candidate set size R vs. recall and time

Recall and search time while increasing candidate set size R.

Settings: 100M CoPhIR dataset, $n = 512$, $l = 8$, $\lambda = 5$, $p = 0.5$ (3rd rank out of 5)
PPP-Codes Conclusions

The results of the PPP-Codes evaluation show that

- even two pivot spaces help, more than five do not help much
- the candidate set is reduced by one–two orders of magnitude
- the rank & merge algorithm is complex but usually worth
 - for larger data objects and complex distance function
PPP-Codes Conclusions

The results of the PPP-Codes evaluation show that

- even two pivot spaces help, more than five do not help much
- the candidate set is reduced by one–two orders of magnitude
- the rank & merge algorithm is complex but usually worth
 - for larger data objects and complex distance function

Demonstration of image visual search

- 20 million images
- powerful visual descriptors from deep convolutional neural networks
 - 4096-dimensional vectors with L_2 distance
- PPP-Codes index (1 GB in memory, 124 GB on the SSD disk)
- To be presented at SIGIR 2015

http://disa.fi.muni.cz/demos/profiset-decaf/