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Motivation: Efficiency of Similarity Search

Motivation

The similarity is key to human cognition, learning, memory. . .

[cognitive psychology]
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Motivation

The similarity is key to human cognition, learning, memory. . .

[cognitive psychology]

everything we can see, hear, measure, observe is in digital form

Computers should be able to search data based on similarity

The similarity search problem has two aspects

effectiveness: how to measure similarity of two “objects”

domain specific (photos, X-rays, voice, music, EEG, MTR. . . )

efficiency: how to realize similarity search fast

using a given data + similarity measure
on very large data collections
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Motivation: Efficiency of Similarity Search

Efficiency: Motivation Example

Example of data:

general images (photos)

every image processed by a deep convolutional neural network

to obtain a visual characterization of the image (descriptor)
compared by Euclidean distance to measure visual similarity
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Motivation: Efficiency of Similarity Search

Efficiency: Motivation Example

Example of data:

general images (photos)

every image processed by a deep convolutional neural network

to obtain a visual characterization of the image (descriptor)
compared by Euclidean distance to measure visual similarity

Efficiency problem:

20 million of images with such descriptors

each descriptor is a 4096-dimensional float vector

⇒ over 320 GB of data to be organized for similarity search

answer similarity queries online
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Metric Data Partitioning Fundamentals

Distance-based Similarity Search

generic similarity search

applicable to many domains

data modeled as metric space (D, δ), where D is a domain of objects
and δ is a total distance function δ : D ×D −→ R+

0 satisfying
postulates of identity, symmetry, and triangle inequality

query by example: k-NN(q) returns k objects x from the dataset
X ⊆ D with the smallest δ(q, x)
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data modeled as metric space (D, δ), where D is a domain of objects
and δ is a total distance function δ : D ×D −→ R+

0 satisfying
postulates of identity, symmetry, and triangle inequality

query by example: k-NN(q) returns k objects x from the dataset
X ⊆ D with the smallest δ(q, x)

dataset X may be very large

function δ may be time consuming
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Metric Data Partitioning Voronoi Partitioning

Voronoi Partitioning

In metric space, there is no absolute order of the objects, no coordinates,...

Dataset partitioning is done using reference objects (pivots)

Let us have a fixed set of n pivots {p1, . . . , pn}

Voronoi cell Ci = all objects for
which pivot pi is the closest
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Metric Data Partitioning Voronoi Partitioning

Recursive Voronoi Partitioning

Let us use the same set of n pivots p1, . . . , pn recursively

Partition each Ci using the other pivots p1, . . . , pi−1, pi+1, . . . , pn
Ci ,j = objects for which pi is the closest and pj the second closest

this principle can be used l-times recursively up to level l = n
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Metric Data Partitioning Voronoi Partitioning

Pivot Permutations

A different point of view: (prefixes of) pivot permutations

For each object x ∈ X , order the pivots according to distances δ(x , pi )

Let Πx be a permutation on the set of pivot indexes {1, . . . , n}
such that Πx(j) is index of the j-th closest pivot from x

for example, Πx(1) is index of the closest pivot from x
pΠx (j) is the j-the closest pivot from x

Formally: Πx is permutation on {1, . . . , n} such that ∀i : 1 ≤ i < n:

δ(x , pΠx (i)) < δ(x , pΠx (i+1))

Πx is denoted as pivot permutation (PP) with respect to x .
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Metric Data Partitioning Voronoi Partitioning

Correspondence between Voronoi partitioning and PPs

Recursive Voronoi partitioning to level l

Cell C〈i1,...,il 〉 contains objects x for
which

Πx(1) = i1, Πx(2) = i2, . . . ,Πx(l) = il

l-tuple 〈i1, . . . , il〉 is an l-prefix of pivot permutation Πx

pivot permutation prefix (PPP)
terms “Voronoi cell” and “PPP” correspond to each other
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M-Index Principles

M-Index Indexing Structure

Our specific Voronoi indexes: M-Index, Distributed M-Index, PPP-Codes

M-Index: basic properties

uses dynamic recursive Voronoi partitioning (details later)

it defines a (hash) mapping from the metric space to (float) numbers

data either in memory or on disk (continuous chunks)

both precise and approximate similarity search

Novak, D. and Batko, M. (2009). Metric Index: An Efficient and Scalable Solution for
Similarity Search. In Proceedings of SISAP 09, (pp. 65–73). IEEE Comput. Soc. Press.

Novak, D., Batko, M. and Zezula, P. (2011). Metric Index: An Efficient and Scalable

Solution for Precise and Approximate Similarity Search. Inform. Syst., 36(4), 721–733.
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M-Index Principles

M-Index Mapping Function

16

2,3C2,1

2,4C

p
2

......
0 87654

C

example with n = 4 and l = 2

integral part of the key
identification of the cell

fractional part of the key

position within the cell

distance from the closest pivot

key l(x) =

= δ(pΠx (1), x) +
l∑

i=1

(Πx(i)− 1) · n(l−i)

domain of δ normalized to [0, 1)

size of the key l domain: nl
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M-Index Principles

M-Index with Dynamic Level

1C

1,3C

1,2C

1,3,C n nC ,1,n−1

2C

1,3,4C1,3,2C nC ,1,2 nC ,1,3

l
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... ...
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C1,n

C
nC

n,1

nC nC,2 ,n−1

level

level

level

partition only those cells that exceed certain capacity

pick a maximum level 1 ≤ lmax ≤ n

the key l formula becomes:

key l(x) = d(pΠx (1), x) +
l∑

i=1

(Πx(i)− 1) · n(lmax−i)
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M-Index Precise and Approximate Search

M-Index: Precise Range Query Evaluation

Precise evaluation of range query R(q, r) employs practically all known
metric principles of space pruning and filtering:

double-pivot distance constraint

skip accessing of Voronoi cell Ci if

δ(q, pi )− δ(q, pΠq(1)) > 2 · r

use hyperplane between pivot pi and qΠq(1)

apply l-times for cell Ci1,...,il

range-pivot distance constraint

each leaf cell Ci1,...,il stores rmin and rmax as min and max of distances

{δ(x , pi1 )|x ∈ Ci1,...,il}
skip accessing of cell Ci1,...,il if

δ(q, pi1 ) + r < rmin or δ(q, pi1 )− r > rmax
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M-Index Precise and Approximate Search

M-Index: Precise Range Query Evaluation (cont.)

object-pivot distance constraint

the fractional part of an M-Index key is an object-pivot distance
for range query R(q, r) identify interval of keys in cell Ci1,...,il

[δ(q, pi1 )− r , δ(q, pi1 ) + r ]

pivot filtering

store distances δ(x , p1), . . . , δ(x , pn) together with each object x
skip computation of δ(q, x) at query time if

max
i∈{1,...,n}

|δ(q, pi )− δ(x , pi )| > r
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M-Index Precise and Approximate Search

M-Index Precise Strategy: Brief Evaluation

Dataset: CoPhIR (Content-based Photo Information Retrieval)

combination of five MPEG-7 descriptors
280 dimensions altogether, weighted sum of partial distances

Data volume accessed for kNN(q, 50)
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M-Index Precise and Approximate Search

Approximate Strategy for M-Index

p
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Estimate “distances” between the
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query q is represented by distances
δ(q, p1), δ(q, p2), . . . , δ(q, pn)

each Voronoi cell is assigned a “penalty” with respect to q

penalty(Ci1,...,il ) =
l∑

j=1

max
{
δ(pij , q)− δ(pΠq(j), q), 0

}
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M-Index Precise and Approximate Search

Approximate Strategy: Other Options

another natural option is to represent the query by its Voronoi cell

and to estimate “distances” between the Voronoi cells (PPPs)

Kendall Tau, Spearman Footrule distance, Spearman Rho, . . .

using richer information for the query than for data is worth
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M-Index Precise and Approximate Search

M-Index Approximate Strategy: Brief Evaluation
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M-Index M-Index Related Pieces of Work

M-Index Related Pieces of Work

Distributed indexes: M-Chord (preliminary), distributed M-Index
Novak, D., and Zezula, P. (2006). M-Chord: A Scalable Distributed Similarity Search

Structure. In Proceedings InfoScale 06 (pp. 1–10). ACM Press.

Novak, D., Batko, M., and Zezula, P. (2012). Large-scale similarity data management

with distributed Metric Index. Information Processing & Management, 48(5), 855–872.

M-Index defines a locality-sensitive hashing function for metric spaces
Novak, D., Kyselak, M., and Zezula, P. (2010). On locality-sensitive indexing in generic

metric spaces. In Processing of SISAP 10 (pp. 59–66). ACM Press.

Multiple independent M-Indexes to improve the search (LSH style)
Novak, D., and Zezula, P. (2014). Performance Study of Independent Anchor Spaces for

Similarity Searching. The Computer Journal, 57(11), 1741–1755.

Novak, Zezula (DISA Lab, MU Brno) Voronoi-based Metric Indexes Spring 2015 19 / 29



M-Index M-Index Related Pieces of Work

M-Index Related Pieces of Work

Distributed indexes: M-Chord (preliminary), distributed M-Index
Novak, D., and Zezula, P. (2006). M-Chord: A Scalable Distributed Similarity Search

Structure. In Proceedings InfoScale 06 (pp. 1–10). ACM Press.

Novak, D., Batko, M., and Zezula, P. (2012). Large-scale similarity data management

with distributed Metric Index. Information Processing & Management, 48(5), 855–872.

M-Index defines a locality-sensitive hashing function for metric spaces
Novak, D., Kyselak, M., and Zezula, P. (2010). On locality-sensitive indexing in generic

metric spaces. In Processing of SISAP 10 (pp. 59–66). ACM Press.

Multiple independent M-Indexes to improve the search (LSH style)
Novak, D., and Zezula, P. (2014). Performance Study of Independent Anchor Spaces for

Similarity Searching. The Computer Journal, 57(11), 1741–1755.

Novak, Zezula (DISA Lab, MU Brno) Voronoi-based Metric Indexes Spring 2015 19 / 29



M-Index M-Index Related Pieces of Work

M-Index Related Pieces of Work

Distributed indexes: M-Chord (preliminary), distributed M-Index
Novak, D., and Zezula, P. (2006). M-Chord: A Scalable Distributed Similarity Search

Structure. In Proceedings InfoScale 06 (pp. 1–10). ACM Press.

Novak, D., Batko, M., and Zezula, P. (2012). Large-scale similarity data management

with distributed Metric Index. Information Processing & Management, 48(5), 855–872.

M-Index defines a locality-sensitive hashing function for metric spaces
Novak, D., Kyselak, M., and Zezula, P. (2010). On locality-sensitive indexing in generic

metric spaces. In Processing of SISAP 10 (pp. 59–66). ACM Press.

Multiple independent M-Indexes to improve the search (LSH style)
Novak, D., and Zezula, P. (2014). Performance Study of Independent Anchor Spaces for

Similarity Searching. The Computer Journal, 57(11), 1741–1755.

Novak, Zezula (DISA Lab, MU Brno) Voronoi-based Metric Indexes Spring 2015 19 / 29



PPP-Codes Data Encoding and Searching

Standard Similarity Search Approach

standard approach to large-scale approximate search (e.g. M-Index):

dataset X is partitioned and stored

disk storage
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given query q, the “most-promising” partitions form the candidate set

the candidate set SC is refined by calculating δ(q, x), ∀x ∈ SC

majority of the search costs:

reading and refinement of SC

=⇒ accuracy of the candidate set
is key

disk storage
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PPP-Codes Data Encoding and Searching

PPP-Codes in a Nutshell

1 data space is partitioned multiple-times independently

each partitioning is defined by one pivot space (recursive Voronoi)

2 based on these partitionings, objects are mapped onto memory codes

3 given query q, multiple ranked candidate sets are generated

4 these candidate rankings are effectively merged

the merged candidate set is smaller and more accurate

5 the final candidate set is retrieved and refined

Novak, D. and Zezula, P. (2014). Rank Aggregation of Candidate Sets for Efficient
Similarity Search. In DEXA 2014 Proceedings, Part II (Vol. 8645, pp. 42–58). Springer.

Best paper of DEXA 2014 Award.
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Space Partitioning and Data Encoding

PPP-Codes define λ independent recursive Voronoi-like space partitionings
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each data object x ∈ X is encoded by position in these diagrams

PPP-Code1..λ
l (x) = 〈Π1

x(1..l), . . . ,Πλ
x (1..l)〉.

where Πj
x(1..l) is the l-prefix of the j-th pivot permutation of object x
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PPP-Codes Data Encoding and Searching

PPP-Code Index

We build a trie-like structure for each pivot space

the memory trie contains only the PPP-Codes and object IDs

with a focus is on memory optimization

1 2 k3 ...

2 k3 ... 1 k3 ...Π(2)=

Π(1)=

3 k4 ...Π(3)= −1k

−1k

Π l  (4..  ),ID Π l  (4..  ),ID Π l  (4..  ),ID Π l  (4..  ),ID

Π l  (3..  ),ID

...

1 3 ...

1 2 ...

... ... ...

...

Given query q, Voronoi cells from each partitioning (trie) are ranked

in a similar way as for M-Index

result: λ independent candidate rankings of object IDs
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Candidate set Identification

λ rankings ψj
q of IDs are aggregated into the final ranking
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Candidate set Identification

λ rankings ψj
q of IDs are aggregated into the final ranking

q ∈ D

ψq
1:  {x  y1 y2}  {y3 y4 y5}  {y6} ...

ψq
2:  {y3 y2}  {y1 y4 y6 y7} {x  y8} ...

ψq
3:  {x} {y3 y4 y5}  {y2 y6} ...

ψq
4:  {y1 y2} {y3 y4 y5}  {y8}  {y6} ...

ψq
5:  {y1 y2 } {y4 y5} {y3} {x  y7} ...

objects with the rank '1'

rank '2'
rank '3'
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Candidate set Identification

λ rankings ψj
q of IDs are aggregated into the final ranking

ranking of object x is p-percentile (e.g. median) of its λ ranks

Ψp(q, x) = percentilep(ψ1
q(x), ψ2

q(x), . . . , ψλq (x))

q ∈ D

ψq
1:  {x  y1 y2}  {y3 y4 y5}  {y6} ...

ψq
2:  {y3 y2}  {y1 y4 y6 y7} {x  y8} ...

ψq
3:  {x} {y3 y4 y5}  {y2 y6} ...

ψq
4:  {y1 y2} {y3 y4 y5}  {y8}  {y6} ...

ψq
5:  {y1 y2 } {y4 y5} {y3} {x  y7} ...

objects with the rank '1'

Ψ0.5 (q, x) = percentile0.5{1, 1, 3, 4, ?} = 3 

rank '2'
rank '3'
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Idea Behind the Rank Aggregation

the Voronoi cells span large areas of the space

given a query, the “close” cells contain also distant data objects

actually, far more distant objects than close ones

having several “orthogonal” partitionings

the query-relevant objects are at top positions of “all” partitionings
the distant objects at top positions vary

the percentile-based aggregation increases probability that
query-relevant objects are ranked higher than the distant ones

Novak, Zezula (DISA Lab, MU Brno) Voronoi-based Metric Indexes Spring 2015 25 / 29



PPP-Codes Data Encoding and Searching

Idea Behind the Rank Aggregation

the Voronoi cells span large areas of the space

given a query, the “close” cells contain also distant data objects

actually, far more distant objects than close ones

having several “orthogonal” partitionings

the query-relevant objects are at top positions of “all” partitionings
the distant objects at top positions vary

the percentile-based aggregation increases probability that
query-relevant objects are ranked higher than the distant ones

Novak, Zezula (DISA Lab, MU Brno) Voronoi-based Metric Indexes Spring 2015 25 / 29



PPP-Codes Data Encoding and Searching

Idea Behind the Rank Aggregation

the Voronoi cells span large areas of the space

given a query, the “close” cells contain also distant data objects

actually, far more distant objects than close ones

having several “orthogonal” partitionings

the query-relevant objects are at top positions of “all” partitionings
the distant objects at top positions vary

the percentile-based aggregation increases probability that
query-relevant objects are ranked higher than the distant ones

Novak, Zezula (DISA Lab, MU Brno) Voronoi-based Metric Indexes Spring 2015 25 / 29



PPP-Codes Data Encoding and Searching

Idea Behind the Rank Aggregation

the Voronoi cells span large areas of the space

given a query, the “close” cells contain also distant data objects

actually, far more distant objects than close ones

having several “orthogonal” partitionings

the query-relevant objects are at top positions of “all” partitionings
the distant objects at top positions vary

the percentile-based aggregation increases probability that
query-relevant objects are ranked higher than the distant ones

Novak, Zezula (DISA Lab, MU Brno) Voronoi-based Metric Indexes Spring 2015 25 / 29



PPP-Codes Data Encoding and Searching

Overall schema of the PPP-Codes search algorithm

calculate λ∙n 
query-pivot 
distances δ(q,pi

j ) 

k-NN(q) PPPRank(q,p,R): 
merge λ ranks to 
get top R objects

GetNextIDs(q,2):
generate  ψq

2 
ranking

GetNextIDs(q,1):
generate ψq

1 
ranking

... GetNextIDs(q,λ):
generate ψq

λ 
ranking

retrieve 
R objects

SSD

refine R objects 
by δ(q,x)

1 2

3

4 5
k  best 
objects

individual steps run in separate threads

requires a fast ID-object storage (SSD or distributed)
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PPP-Codes Efficiency Evaluation

Evaluation 1: Accuracy of the Candidate Set

How many candidate objects are needed to achieve certain recall level
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PPP-Codes Efficiency Evaluation

Evaluation 2: Overall Efficiency

candidate set size R vs. recall and time

1−NN recall (left axis)
10−NN recall (left axis)
50−NN recall (left axis)
search time (righ axis)
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Recall and search time while increasing candidate set size R.

Settings: 100M CoPhIR dataset, n = 512, l = 8, λ = 5, p = 0.5 (3rd rank out of 5)
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PPP-Codes Conclusions

The results of the PPP-Codes evaluation show that

even two pivot spaces help, more than five do not help much

the candidate set is reduced by one–two orders of magnitude

the rank & merge algorithm is complex but usually worth

for larger data objects and complex distance function

Demonstration of image visual search

20 million images

powerful visual descriptors from deep convolutional neural networks

4096-dimensional vectors with L2 distance

PPP-Codes index (1 GB in memory, 124 GB on the SSD disk)

To be presented at SIGIR 2015

http://disa.fi.muni.cz/demos/profiset-decaf/
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