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Motivation

@ The similarity is key to human cognition, learning, memory. ..
[cognitive psychology]
@ everything we can see, hear, measure, observe is in digital form

@ Therefore, computers should be able to search data base on similarity

The similarity search problem has two aspects
o effectiveness: how to measure similarity of two “objects”

e domain specific (photos, X-rays, MRT results, voice, music, EEG,...)

o efficiency: how to realize similarity search fast

e using a given similarity measure
e on very large data collections
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Efficiency: Motivation Example

Type of data:

@ general images (photos)
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Efficiency: Motivation Example

Type of data:

@ general images (photos)
@ every image has been processed by a deep neural network

o to obtain a “semantic characterization” of the image (descriptor)
e compared by Euclidean distance, it measures visual similarity of images
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Efficiency: Motivation Example

Type of data:

@ general images (photos)
@ every image has been processed by a deep neural network

o to obtain a “semantic characterization” of the image (descriptor)
e compared by Euclidean distance, it measures visual similarity of images

Efficiency problem:
@ what if we had 100 million of images with such descriptors

@ each descriptor is a 4096-dimensional float vector

@ = over 1.5 TB of data to be organized for similarity search
e answer similarity queries online
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Real Application: Multi-field Data

@ real-world application data objects would have many “fields”:

o attribute fields (numbers, strings, dates, etc.)
o (several) descriptors for similarity search
e keywords/annotations for full-text search, etc.
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R
Real Application: Multi-field Data

@ real-world application data objects would have many “fields”:

o attribute fields (numbers, strings, dates, etc.)
o (several) descriptors for similarity search
e keywords/annotations for full-text search, etc.

@ example:

{ "ID": "image_1",
"author": "David Novak",
"date": "20140327",
"categories": [ "outdoor", "family" ],
"DNN_visual_descriptor": [5.431, 0.0042, 0.0, 0.97,... 1,
"dominant_color": "Ox9E, 0xC2, 0x13",
"keywords": "summer, beach, ocean, sun, sand" }
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Objectives

Goal: generic, horizontally scalable system architecture that would allow
@ standard attribute-based access
@ keyword (full-text) search

@ similarity search in “arbitrary” similarity space
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Objectives

Goal: generic, horizontally scalable system architecture that would allow

@ standard attribute-based access

keyword (full-text) search

@ similarity search in “arbitrary” similarity space

multi-modal search — combination of several search perspectives, e.g.

e direct combination of similarity modalities
e similarity query with filtering by attribute(s)
e re-ranking of search result by different criteria

@ ...and do it all on a very large scale

e voluminous data collections
e high query throughput
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Existing Solutions Similarity Indexing

Distance-based Similarity Search

@ generic similarity search
e applicable to many domains
e data modeled as metric space (D, d), where D is a domain of objects
and ¢ is a total distance function 6 : D x D — R satisfying
postulates of identity, symmetry, and triangle inequality
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Szl
Distance-based Similarity Search

@ generic similarity search
e applicable to many domains

e data modeled as metric space (D, d), where D is a domain of objects
and ¢ is a total distance function 6 : D x D — R satisfying
postulates of identity, symmetry, and triangle inequality

e query by example: K-NN(g) returns K objects x from the dataset
X C D with the smallest §(q, x)
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SIS UEIN  Similarity Indexing

Similarity Indexing Techniques

Metric-based similarity indexing: two decades of research

@ memory structures for precise K-NN search
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Similarity Indexing Techniques

Metric-based similarity indexing: two decades of research

@ memory structures for precise K-NN search
o efficient disk-oriented techniques

o precise and approximate (not all objects from K-NN answer returned)
e objects are partitioned and organized on disk by the similarity metric

@ given query q, the ,
“most-promising” partitions form |
the candidate set \

o the candidate set Sc is refined by
calculating 6(q, x), Vx € S¢

disk storage

David Novak Multi-modal Similarity Retrieval DISA Seminar 8 /17



Szl
Similarity Indexing Techniques: Metadata Organization

Recently, there were proposed a few indexes of different type
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Similarity Indexing Techniques: Metadata Organization

Recently, there were proposed a few indexes of different type
@ memory index that organizes only metadata

@ Novak, D., & Zezula, P. (2014). Rank Aggregation of Candidate Sets for Efficient
Similarity Search. In DEXA 2014, Springer.
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Recently, there were proposed a few indexes of different type
@ memory index that organizes only metadata

@ Novak, D., & Zezula, P. (2014). Rank Aggregation of Candidate Sets for Efficient
Similarity Search. In DEXA 2014, Springer.
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Distributed Similarity Indexes

Distributed Data Structures for metric-based similarity search

@ data partitioned to nodes according to the metric
@ at query time, query-relevant partitions (nodes) accessed
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Szl
Distributed Similarity Indexes

Distributed Data Structures for metric-based similarity search

@ data partitioned to nodes according to the metric

@ at query time, query-relevant partitions (nodes) accessed
e GHT*, VPT*, MCAN, M-Chord

3¢
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Distributed Key-value Stores
Current Distributed Stores

Currently, many efficient distributed key-value or document stores emerged

o distributed hash tables
@ objects organized by IDs (ID-object map)
e quick access to “documents” by IDs

@ secondary indexes on attributes
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Current Distributed Stores

Currently, many efficient distributed key-value or document stores emerged

o distributed hash tables
@ objects organized by IDs (ID-object map)
e quick access to “documents” by IDs

@ secondary indexes on attributes
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Big Data Similarity Retrieval Generic Architecture

Generic Architecture
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Big Data Similarity Retrieval

Generic Architecture
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Big Data Similarity Retrieval Generic Architecture

Generic Architecture
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Big Data Similarity Retrieval Generic Architecture

System Features

Types of queries
@ ID-object query (often useful to initiate k-NN(q) query)
@ attribute-based queries (secondary indexes)
o key-word (full-text) queries (Lucene-like index)

@ similarity queries (via similarity indexes)
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Big Data Similarity Retrieval Generic Architecture

System Features

Types of queries

ID-object query (often useful to initiate k-NN(g) query)

attribute-based queries (secondary indexes)
key-word (full-text) queries (Lucene-like index)

similarity queries (via similarity indexes)

combined similarity queries (/ate fusion)
K-NN query with attribute filtering

distributed re-ranking query answer

efficient management of multiple data collections
X=X UXHU---UAX

core key-value store is well horizontally scalable
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IEEDEYERINTEG ARGVl Specific System

Specific System: Large-scale Image Management

100M objects from the CoPhIR dataset (benchmark):

{ "ID": "002561195",
"title": "My wife & daughter on Gold Coast beach",
"tags": "summer, beach, ocean, sun, sand, Australia",
"mpeg7_scalable_color": "25 36 0 127 69...",
"mpeg7_color_layout": "25 41 53 20; 32; -16...",
"mpeg7_color_structure": "25 41 53 20; 32;...",
"mpeg7_edge_histogram": "5 1 23 77 36...",
"mpeg7_homogeneous_texture": "232 201 198 180 201...",
"GPS_coordinates": "45.50382, -73.59921",
"flickr_user": "david_novak" }
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IEEDEYERINTEG ARGVl Specific System

System Schema
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S e
Specific System: Demo

20M objects of this type:

{ "ID": "002561195",
"title": "My wife & daughter on Gold Coast beach",
"keywords": "summer, beach, ocean, sun, sand, Australia",
"DNN_visual_descriptor": [5.431, 0.0042, 0.0, 0.97,... 1 }
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Conclusions

Conclusions

We have proposed and alfa-tested system architecture that
@ provides large-scale similarity search
@ ...on a broad family of data + similarity measures

@ is distributed and horizontally scalable
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Conclusions

Conclusions

We have proposed and alfa-tested system architecture that

provides large-scale similarity search

is distributed and horizontally scalable
can manage multi-field data:

e attribute, keywords, several similarity modalities
e many variants of multi-modal search queries

o

@ ...on a broad family of data + similarity measures
o

o

Challenges:
o full implementation and thorough testing

@ the similarity index can be bottleneck = distribute it
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