
 redis

Karolína Burská
Pavel Šeda

Outline

● Intro to Redis
● Support and popularity
● Data Persistence
● Security
● Installation Steps + CLI
● Redis Data Types (+Working with it)

● Open source; in-memory key-value store

● Often ranked as one of the most popular key-value database (https://db-engines.com/en/ranking)

● Currently sponsored by a private software company Redis Labs

● Support of:

○ Different kinds of abstract data structures - strings, lists, sets, bitmaps, spatial indexes…

○ Optional durability

○ High-level, atomic operations (intersection, union)

○ Master-slave replication of data

Intro to Redis

https://db-engines.com/en/ranking)

Language support

● Many languages support Redis binding:
○ Java (Jedis, JDBC-Redis, RJC, RedisClient, ...),
○ C (credis, eredis, hiredis, libredis, ...),
○ C# (ServiceStack.Redis, StackExchange.Redis, Sider, csredis, ...),
○ Python (aredis, desir, brukva, Pottery, Pypredis, …),
○ Ruby (redic, redis-rb, oxblood, em-redis, em-hiredis, ...),
○ PHP (amphp/redis, Predis, phpredis, Credis, ...),
○ Matlab (redis-octave), etc.

Used by companies

● Used by companies like Twitter, GitHub, StackOveflow, Pinterest, Amazon Web
services (Elasticache), Microsoft (offers Redis Cache in Azure)

● Common uses:
○ Caching
○ Publish-subscribe queues

Comparison with other Data Stores

● Memcached
○ Open-source, in-memory, multithreaded key-value store
○ Does not provide persistence

● MongoDB
○ Open-source, document DB (supports richer data types)
○ Slower than Redis and Memcached

Comparison with other Data Stores
Redis Memcached MongoDB

in-memory X X

persistent X X

key-value store X X

support of more than strings X X

multithreaded X X

support of larger-than-memory datasets X

speed memory memory disk

In-memory: the speed of cache

The main feature of Redis - speed

● Memory access is faster than disk access (0.1 μs vs. 10 ms)
● Support of persistence - can persist its data to disk
● Two approaches to achieve durability

Data stored in-memory does not survive a server shutdown.

Two options which can be combined:

● (RDB) Redis Database File
○ Point-in-time snapshots of a dataset
○ Performed at specified intervals

● (AOF) Append-Only File
○ Logging of every received write operation
○ Commands are logged using Redis protocol format
○ Played again at server startup

Redis Persistence

Replication & Sharding

Redis Cluster - a distributed implementation of Redis

High performance and linear scalability

● Hashing - not consistent hashing, but a different form of sharding (partitioning). Every key is part of

an hash slot
● Master-slave model replication (mirroring), every hash slot has from 1 to N replicas

● Uses asynchronous replication (thus does not guarantee strong consistency)

Security

● Redis is designed to be accessed by trusted clients inside trusted environments
○ Do not expose Redis directly to the internet
○ Web pages must mediate access between Redis and untrusted clients

● Redis port should be firewalled to prevent access from outside (network security)
● Protected mode (Redis replies queries only from the loopback interfaces)
● Redis does not support encryption
● Disable specific commands

What are the limitations?

● “in-memory” -> limited by the size of RAM. But, nowadays uses swap file for the
unused values,

● Memory fragmentation - working with amounts of data may result in
performance degradation

● master-slave architecture - when designed poorly (one master node, e.g.), there
is more load on the master node

Practical Intro

Installing Steps (Linux - Tested on Ubuntu)

Installation commands:

● $ sudo apt-get update (after run cmd put your system pwd)

● $ sudo apt-get upgrade (confirm with Y)

● $ sudo apt-get install redis-server (confirm with Y)

Now it is prefer to copy configuration file to somewhere on the disk before we will do another steps

● $ sudo cp /etc/redis/redis.conf /etc/redis/redis/redis.conf.default

Run redis:

● $ redis-server (it is running on port 6379 - default port)

Check running Redis:

● $ redis-cli (running redis cmd client interface) -> $ ping (should return PONG)

Installing Steps (Windows)

Installation steps:

● Download from https://github.com/MSOpenTech/redis/releases (download last release .msi file)

● Install it, go through step by step windows (NOTE: when selecting Destination Folder check Add

the Redis installation folder to the PATH environment variable)

Run cmd as administrator at Redis installation folder:

● $ redis-server redis.windows.conf (set configuration file)

● $ redis-cli

● $ ping (should return PONG)

https://github.com/MSOpenTech/redis/releases

CLI (Command Line Interface) - basic
commands

● $ SET foo 100 (set for ‘foo’ key value ‘100’)

● $ MSET key1 “Hello” key2 “World” (set multiple keys)

● $ APPEND key1 “ World”

● $ GET foo (should return “100”)

● $ INCR foo (returns (integer) 101) or $ DECR foo

● $ EXISTS foo (return (integer) 1 if exists or (integer) 0 if do not exists)

● $ DEL foo (deletes the key)

Running cli commands directly from standard cmd:

● $ redis-cli INCR foo > commands.txt (creates a file and saves the values here)

Monitoring: $redis-cli monitor (will monitor every action on Redis instance)

CLI (Command Line Interface) - basic commands
Key spaces:

● $ SET server:name myserver

● $ GET server:name

● $ SET server:port 6379

● $ GET server:port (give your values different name spaces)

Expiration cmds:

● $ SET resource:foo hello

● $ EXPIRE resource:foo 120

● $ TTL resource:foo (test time to expiration)

Delete everything:

● $ FLUSHALL (get rid of everything)

Java Clients
● https://redis.io/clients

● e.g., for Java Jedis:

https://redis.io/clients

Data Types

● Strings
● Lists
● Sets
● Sorted Sets
● Hashes

Working with Lists

● Sorted by insertion order
● Values could be pushed on the head or tail
● Basic commands:

○ $LPUSH mylist “a”; $LPUSH mylist “b”;, $RPUSH mylist “c”
○ LRANGE mylist 1 2; LRANGE mylist 0 -1 (returns all from mylist)
○ LLEN mylist (returns the length of the ‘mylist’ list)
○ LPOP (removes and returns the first element of a list)
○ LINSERT (insert on the exact place in the list)

Working with Sets

● Unordered collection of strings
● Can add, remove and test for existence
● Do NOT allow repeating members
● Basic commands:

○ SADD (Adds given values to a set - ignore existing values)
○ SREM (Removes values from a set)
○ SISMEMBER (Tests if the given value is in the set)
○ SMEMBERS (Returns a list of all of the members of a set)

Working with Sorted Sets

● Every member is associated with a “score”
● Score is required:

○ Float / Number, Score is NOT unique / Values are
● In case adding another same key, then the score is also overridden
● Basic Commands:

○ ZADD (Adds given values to a sorted set)
○ ZREM (Removes values from a sorted set)
○ ZRANGEBYSCORE people 1950 1990 (All people with score between ..)
○ ZRANK (Returns the rank of a member with scores ordered high to low)
○ ZINCRBY (Increments the score of member)

Working with Hashes

● What is a Hash?
○ Maps between string fields and string values
○ Perfect for representing objects

● Basic commands:
○ HSET (Sets a field in the Hash)
○ HMSET user2 name “Pavel” email “jill@gmail.com” age “26” (Sets a multiple

fields to their respective values)
○ HGET user2 name (Returns name from user2)
○ HMGET user2 name age (Returns name and age from user2)
○ HGETALL user2 (Return all fields from user2)

mailto:jill@gmail.com

Summary

● Key-Value DB
○ Free, Super fast,
○ In-memory cache, Open Source,
○ Stable, Ease to use, Performance

● Support many programming clients
● Support of advanced data structures (Strings, Lists, Sets, Sorted Sets, Hashes)

Thank you for your attention

Questions?

441048@mail.muni.cz (Pavel Šeda)

396296@mail.muni.cz (Karolína Burská)

mailto:441048@mail.muni.cz
mailto:396296@mail.muni.cz

