
PostgreSQL

Veronika Aksamítová, Dominik Toušek, Dávid Veliký, Miroslava Voglová

PostgreSQL

● object-relational database management system (ORDBMS)

● based on POSTGRES

● developed by PostgreSQL Global Development Group

● Supported data types:

 hierarchical document data, key-value and relational data

● Master - slave database architecture (master/ read/write, standby/slave servers)

● MVCC (multiversion concurrency control) - three levels of transaction isolation:

 Read Committed, Repeatable Read and Serializable

PostgreSQL history

● based on POSTGRES (1986 - University of California (professor Michael

Stonebraker))

● 1994 - added SQL interpreter and new name Postgres95

● 1996 - renamed as PostgreSQL

PostgreSQL release history
1999 - MVCC

2002- PL/Python

2005 - savepoints, two-phase commit, table partitioning, shared row locking

2010 - binary streaming replication, hot standby

2011 - k-nearest neighbors (k-NN) indexing

2012 - cascading streaming replication, native JSON support, space-partitioned GiST

indexes

2013 - dedicated JSON operators

2014 - JSONB data type, GiN index improvements

2016 - JSONB-modifying operators/functions, BRIN (Block Range Indexes) (speed up

queries on very large tables)

PostgreSQL users

● Yahoo! (web user behavioral analysis)

● Geni.com (genealogy database)

● Skype

● MusicBrainz (online music encyclopedia)

● The International Space Station (collecting telemetry data in orbit)

● Instagram

NoSQL like capabilities

PostgreSQL - useful data types

● Hstore

○ Implemented as hash map

○ Simple key-value store inside relational database

● JSON

○ Used for JSON document storage and retrieval as whole document

● JSONB

○ Used for manipulation with JSON document contents

JSON vs JSONB format

● JSON validity check on insert and update is performed on both formats

JSON

● Data are stored as plain text

● Only basic indexes are available (hash and btree) for the whole column only

JSONB

● Data are stored in binary format

● Slower insert due to conversion process - text -> binary

● Faster read operations - no need to reparse for every query

● Supports indexing of JSON document contents

JSON and JSONB operators

JSON

● Array element/object accessor ->

● Array element/object as text accessor ->>

● Path accessor #>

● Path accessor with conversion to text #>>

JSONB

● Containment operators @>, <@

● Existence operators ?, ?|, ?&

JSON and JSONB CONSTRAINTS

● Enforcing JSON field presence -> IS NOT NULL

● Constraints on JSON fields -> enforcing some range of numbers, ...

CREATE TABLE employee (

 data JSON,

 CONSTRAINT validate_id CHECK ((data->>'id')::integer >= 1 AND (data->>'id') IS NOT NULL),

 CONSTRAINT validate_name

CHECK (length(data->>'name') > 0 AND (data->>'name') IS NOT NULL)

);

Indexes for JSONB

- BTree indexes

- Quick but single purpose

- GIN - Generalized Inverted Index

- Quick and (should be) flexible

- 2 built-in JSONB specific operators implementations

GIN indexes - simple index vs expression index

Simple index

● Could be used only when operators are applied directly to indexed column

● Creation: CREATE INDEX test1_col1_idx ON test1 (col1);

● Usage: SELECT * FROM test1 WHERE col1 = 'value';

Expression index

● Could be used when operators are applied to expression results

● Creation: CREATE INDEX test1_lower_col1_idx ON test1 (lower(col1));

● Usage: SELECT * FROM test1 WHERE lower(col1) = 'value';

GIN indexes - operators implementations

jsonb_ops (default)

● Supported operators: @>, ?, ?& and ?|

● Stores separately all parts of path and value

● Could be very large

jsonb_path_ops

● Supported operators: @>

● Stores the whole path to value, including the value, as one index entry

● Smaller and quicker than default implementation

Indexes - example data

● Table schema: CREATE TABLE demo_users (
id INTEGER NOT NULL DEFAULT NEXTVAL('demo_users_id_seq'),
json_data jsonb,
CONSTRAINT demo_users_pk PRIMARY KEY (id)

);

● Jsonb column format: {
“person” : {

“first_name”:”<name>”,
“last_name”:”<name>”,
“gender”:”<male/female>”

}
} (1.000.000 randomly generated rows in table)

GIN indexes - jsonb_ops example

● Index creation: CREATE INDEX demo_users_gin_index ON demo_users
USING gin ((json_data -> 'person' -> 'first_name'));

 SELECT COUNT(*) FROM demo_users
 WHERE json_data -> 'person' -> 'first_name' @> '"8b1cd13e7d0be574ccec657072ee9212"';

● Index creation: ~14.2s

● Access time without index: ~500ms

● Access time with index: ~32ms

GIN indexes - jsonb_path_ops example

● Index creation: CREATE INDEX demo_users_gin_path_index ON demo_users
USING gin ((json_data -> 'person' -> 'first_name') jsonb_path_ops);

SELECT COUNT(*) FROM demo_users

 WHERE json_data -> 'person' -> 'first_name' @> '"8b1cd13e7d0be574ccec657072ee9212"';

● Index creation: ~6s

● Access time without index: ~500ms

● Access time with index: ~18ms

BTree index - example

● Index creation: CREATE INDEX demo_users_btree_index
on demo_users ((json_data #>> '{person,first_name}'));

SELECT COUNT(*) FROM demo_users

 WHERE json_data #>> '{person,first_name}' = '"8b1cd13e7d0be574ccec657072ee9212"';

● Index creation: ~16.6s

● Access time without index: ~500ms

● Access time with index: ~14ms

Scalability

High availability and replication

● before 9.0 was achieved by external packages like Slony-I
○ trigger-based, causes overhead on master

○ single master only, master is a single point of failure

○ no good failover system for electing a new master or having a failed master rejoin the cluster

○ slave can execute read-only queries

○ suffers from O(N2) communications where N = number of nodes

○ table-level granularity allows complex data partitioning configuration

● from 9.0 streaming replication implemented in Postgres core
○ WAL (write-ahead log)

○ slaves can execute queries

○ no overhead on master

● asynchronous replication causes lag (bigger in trigger-based) that can cause

inconsistent view of data and possible data lost on fail-over

High availability and replication

when replication implemented in Postgre core is not usable:

● master and slave have different postgres versions

● master and slave on different hardware platform

● master and slave are not identical (multiple databases on master, but only some on

slave)

Possibilities of horizontal scalability

● scaling out through extensions
○ available from Postgres version 9.4

○ no data migration needed

○ no change for already running application needed

○ all core Postgres functionality kept

● other databases capable of horizontal scaling with

(modified) Postgres core
○ usually better performance

○ some functionality may not be available

○ examples: GreenPlum database, Postgres-XL

Citus

● turns Postgres into a distributed database

● shared nothing architecture

● enables transparently shard data across multiple PostgreSQL instances

● small shards (default 1GB) for easier rebalancing workload on nodes

● one master node holds metadata about shards in the cluster and parallelizes

incoming queries

● each shard is replicated on multiple cluster nodes so the loss of a single node does

not impact data availability

Citus - processing query

● the Citus master partitions query into

smaller query fragments

● each query fragment can be run

independently on a worker shard

● the query fragments are assigned to

workers

● master oversees execution of fragments,

merges their results, and returns the final

result to the user

● the master also applies optimizations that

minimize the amount of data transferred

across the network.

Citus - node failures

● when a worker node fails, the master node automatically switch to other workers

which have a copy of the shard

● when a worker fail mid-query, query is completed by re-routing the query fragment,

to other worker

● if a worker is permanently down, users can easily rebalance the shards onto other

workers to maintain the same level of availability.

● for automatic recovery from failure of master, it is important to have hot standby

node created through streaming replication of PostgreSQL

● if there is no such node, master can be reconstructed only manually

Interaction with NoSQL databases

FDW

● 2003 SQL/MED
● 2011 PostgreSQL 9.1 read-only support
● 2013 PostgreSQL 9.3 write support
● now variety of FDW:

● mongo_fdw
● hadoop_fdw
● etc. (currently available wrappers)

 ...PGDG support
● Multicorn, Holycorn

img link

https://github.com/EnterpriseDB/mongo_fdw
https://github.com/EnterpriseDB/mongo_fdw
https://bitbucket.org/openscg/hadoop_fdw
https://bitbucket.org/openscg/hadoop_fdw
https://wiki.postgresql.org/wiki/Foreign_data_wrappers
http://multicorn.org/
https://github.com/franckverrot/holycorn
http://multicorn.org/
http://tapoueh.org/images/fdws.320.png
http://tapoueh.org/images/fdws.320.png

FDW - schema

img link

http://www.dalibo.org/_media/overview.png
http://www.dalibo.org/_media/overview.png

FDW - How To ...
● Load extension first time after install

CREATE EXTENSION mongo_fdw;

● Create server object

CREATE SERVER mongo_server

FOREIGN DATA WRAPPER mongo_fdw

OPTIONS (address '127.0.0.1', port '27017');

● Create user mapping

CREATE USER MAPPING FOR postgres

SERVER mongo_server

OPTIONS (username 'mongo_user', password 'mongo_pass');

● Create foreign table

CREATE FOREIGN TABLE warehouse(_id NAME, warehouse_id int, warehouse_name text, warehouse_created timestamptz)

SERVER mongo_server OPTIONS (database 'db', collection 'warehouse');

● Select from table

SELECT * FROM warehouse WHERE warehouse_id = 1;

Questions?

Sources

http://bsnyderblog.blogspot.sk/2011/09/installing-postgresql-90-on-mac-os-x.html (logo

PostreSQL)

https://en.wikipedia.org/wiki/PostgreSQL

http://peter.eisentraut.org/blog/2015/03/03/the-history-of-replication-in-postgresql/

http://www.postgresql.org

https://www.citusdata.com

http://blog.2ndquadrant.com/jsonb-type-performance-postgresql-9-4/

https://en.wikipedia.org/wiki/PostgreSQL
https://en.wikipedia.org/wiki/PostgreSQL
http://peter.eisentraut.org/blog/2015/03/03/the-history-of-replication-in-postgresql/
http://peter.eisentraut.org/blog/2015/03/03/the-history-of-replication-in-postgresql/
http://www.postgresql.org
http://www.postgresql.org
https://www.citusdata.com
https://www.citusdata.com
http://blog.2ndquadrant.com/jsonb-type-performance-postgresql-9-4/
http://blog.2ndquadrant.com/jsonb-type-performance-postgresql-9-4/

