
Firebase
Martin Galajda, Lenka Janečková

Introduction

Cloud-hosted database

 Backend-as-a-Service (BaaS)

 Started as a YC11 startup, acquired by Google in 2014

 Data stored in JSON and synchronized to every connected

client

 Supports iOS, Android, C++, Web apps, REST API, Unity, ...

 Used by Shazam, Skyscanner, Booking.com, Viber, ...

Introduction

Other features Firebase supports:

 Storage

 Hosting

 Authentication

 Notifications

Cloud functions

Cloud messaging

 Analytics

 Remote config

Crash reporting

How does it work?

 The clients connect directly to the database in the cloud and don’t

have to go through the application’s server

 No need to worry about the backend server, database, real-time
component (socket.io) or writing REST API

 App is connected to Firebase through WebSockets

 The app just sends data to Firebase and it handles saving and

syncing across all connected devices / sites

 All data is synced through the single WebSocket connection

Writing data offline

 Every client connected to a Firebase database maintains its own

internal version of any active data

 Data is written to this local version first

 The Firebase client synchronizes that data on a "best-effort" basis.

 All writes to the database trigger local events immediately, before

any data is written to the server

 Once connectivity is reestablished, the app receives the set of

events so that the client syncs with the current server state

Authentication

 Built in email/password authentication system

 Supports OAuth2 for Google, Facebook, Twitter and GitHub

 Integrates directly into Firebase database – can be used to

control access to data

Firebase Database Rules

 Determine who has:

 read and write access to the database

 how data is structured

what indexes exist

 These rules live on the Firebase servers and are enforced

automatically at all times

 Every read and write request will only be completed if

the rules allow it.

 By default only authenticated users can read/write data

Firebase Database Rules

 .read

 if and when data is allowed to be read by users

 .write

 if and when data is allowed to be written

 .validate

 what a correctly formatted value will look like, whether it has child

attributes, and the data type

 .indexOn

 specifies a child to index to support ordering and querying

Firebase Database Rules Example

 Built-in variables and functions that allow you

to refer to other paths, server-side

timestamps, authentication information, …

Database indexes

 Indexes are specified using the .indexOn rule

 Example index declaration that would index the

height and length fields for a list of dinosaurs:

Structuring the database

 You need to plan for how data is going to be saved and

later retrieved to make that process as easy as possible

 Data is stored as JSON objects

When you add data to the JSON tree, it becomes a

node in the existing JSON structure with an associated

key

 You can provide your own keys, such as user IDs or

semantic names, or they can be provided for you using

push()

Scaling database - sharding and data

replication

 does not provide data replication by default

 sharding can be achieved by creating multiple firebase

instances (projects)

 e.g. firebase instance for each aggregate entity

Structuring the database - validation

 Rules are made up of

Javascript-like expressions

contained in a JSON document

Basic usage

Initializing the Realtime Database

Write operation

 Method set() saves data to a specified reference, replacing any

existing data at that path, including any child nodes

Read operation

 The value event is fired every time data is changed at the specified

reference, including changes to child nodes

 The event callback is passed a snapshot containing all data at that

location which existed at the time of the event

Update operation

 update() method called on a reference to the location of data

 Enables simultaneous updates to multiple locations in the JSON tree
with a single call

 Simultaneous updates made this way are atomic: either all updates
succeed or all updates fail

Read data once

 snapshot of your data without listening for changes

 once() method - it triggers once and then does not trigger again.

Delete operation

 remove() method called on a reference to the location of the data

Promise

 Method off() on a database reference

Detach listeners

 When the data is committed to the database, set() and update()

operations can return Promise

 A Promise represents an eventual (asynchronous) value

 When it gets resolved, .then() callback function will be called

 if it gets rejected, .catch() callback will be called

Transaction operation

When working with data that could be corrupted by

concurrent modifications

 transaction() method takes an update function and an

optional completion callback.

 The update function takes the current state of the data

as an argument and returns the new desired state

 If the transaction is rejected, the server returns the

current value to the client, which runs the transaction

again with the updated value.

 This repeats until the transaction is accepted or aborted.

Firebase CLI

 provides a variety of tools for managing, viewing, and deploying to

Firebase projects

 npm install –g firebase-tools

 Provides a globally available firebase command available from any

terminal window

 firebase login

 connects your local machine to your Firebase account and grants

access to your projects

 firebase list

 lists of all of your Firebase projects

 firebase init

 steps you through setting up your project directory, including asking

which Firebase features you want to use

 firebase serve

 Starts a local web server with Firebase Hosting configuration

 firebase deploy

 creates new releases for all deployable resources in your project directory

 A project directory must have a firebase.json

 firebase database:get | database:set | database:update |

database:push | database:remove

 Database commands

Firebase CLI

Profiling the database

 Supports a database profiler tool, built into the Firebase CLI

 Logs all the activity in the database over a given period of time, then

generates a detailed report

 firebase database:profile

 Starts profiling the database

 The profiler tool aggregates the data about the database's operations and

displays the results in three primary categories:

 Speed - response time for each operation

 Bandwidth - how much data is consumed across incoming and outgoing

operations

 Unindexed queries

DEMO
https://shrouded-ridge-84643.herokuapp.com/

https://shrouded-ridge-84643.herokuapp.com/

More resources about Firebase

Official Firebase page:

 https://firebase.google.com/

Official Firebase Realtime Database page:

 https://firebase.google.com/docs/database/

https://firebase.google.com/
https://firebase.google.com/docs/database/

Thanks for your attention.
Any questions?

