
Firebase
Martin Galajda, Lenka Janečková

Introduction

Cloud-hosted database

 Backend-as-a-Service (BaaS)

 Started as a YC11 startup, acquired by Google in 2014

 Data stored in JSON and synchronized to every connected

client

 Supports iOS, Android, C++, Web apps, REST API, Unity, ...

 Used by Shazam, Skyscanner, Booking.com, Viber, ...

Introduction

Other features Firebase supports:

 Storage

 Hosting

 Authentication

 Notifications

Cloud functions

Cloud messaging

 Analytics

 Remote config

Crash reporting

How does it work?

 The clients connect directly to the database in the cloud and don’t

have to go through the application’s server

 No need to worry about the backend server, database, real-time
component (socket.io) or writing REST API

 App is connected to Firebase through WebSockets

 The app just sends data to Firebase and it handles saving and

syncing across all connected devices / sites

 All data is synced through the single WebSocket connection

Writing data offline

 Every client connected to a Firebase database maintains its own

internal version of any active data

 Data is written to this local version first

 The Firebase client synchronizes that data on a "best-effort" basis.

 All writes to the database trigger local events immediately, before

any data is written to the server

 Once connectivity is reestablished, the app receives the set of

events so that the client syncs with the current server state

Authentication

 Built in email/password authentication system

 Supports OAuth2 for Google, Facebook, Twitter and GitHub

 Integrates directly into Firebase database – can be used to

control access to data

Firebase Database Rules

 Determine who has:

 read and write access to the database

 how data is structured

what indexes exist

 These rules live on the Firebase servers and are enforced

automatically at all times

 Every read and write request will only be completed if

the rules allow it.

 By default only authenticated users can read/write data

Firebase Database Rules

 .read

 if and when data is allowed to be read by users

 .write

 if and when data is allowed to be written

 .validate

 what a correctly formatted value will look like, whether it has child

attributes, and the data type

 .indexOn

 specifies a child to index to support ordering and querying

Firebase Database Rules Example

 Built-in variables and functions that allow you

to refer to other paths, server-side

timestamps, authentication information, …

Database indexes

 Indexes are specified using the .indexOn rule

 Example index declaration that would index the

height and length fields for a list of dinosaurs:

Structuring the database

 You need to plan for how data is going to be saved and

later retrieved to make that process as easy as possible

 Data is stored as JSON objects

When you add data to the JSON tree, it becomes a

node in the existing JSON structure with an associated

key

 You can provide your own keys, such as user IDs or

semantic names, or they can be provided for you using

push()

Scaling database - sharding and data

replication

 does not provide data replication by default

 sharding can be achieved by creating multiple firebase

instances (projects)

 e.g. firebase instance for each aggregate entity

Structuring the database - validation

 Rules are made up of

Javascript-like expressions

contained in a JSON document

Basic usage

Initializing the Realtime Database

Write operation

 Method set() saves data to a specified reference, replacing any

existing data at that path, including any child nodes

Read operation

 The value event is fired every time data is changed at the specified

reference, including changes to child nodes

 The event callback is passed a snapshot containing all data at that

location which existed at the time of the event

Update operation

 update() method called on a reference to the location of data

 Enables simultaneous updates to multiple locations in the JSON tree
with a single call

 Simultaneous updates made this way are atomic: either all updates
succeed or all updates fail

Read data once

 snapshot of your data without listening for changes

 once() method - it triggers once and then does not trigger again.

Delete operation

 remove() method called on a reference to the location of the data

Promise

 Method off() on a database reference

Detach listeners

 When the data is committed to the database, set() and update()

operations can return Promise

 A Promise represents an eventual (asynchronous) value

 When it gets resolved, .then() callback function will be called

 if it gets rejected, .catch() callback will be called

Transaction operation

When working with data that could be corrupted by

concurrent modifications

 transaction() method takes an update function and an

optional completion callback.

 The update function takes the current state of the data

as an argument and returns the new desired state

 If the transaction is rejected, the server returns the

current value to the client, which runs the transaction

again with the updated value.

 This repeats until the transaction is accepted or aborted.

Firebase CLI

 provides a variety of tools for managing, viewing, and deploying to

Firebase projects

 npm install –g firebase-tools

 Provides a globally available firebase command available from any

terminal window

 firebase login

 connects your local machine to your Firebase account and grants

access to your projects

 firebase list

 lists of all of your Firebase projects

 firebase init

 steps you through setting up your project directory, including asking

which Firebase features you want to use

 firebase serve

 Starts a local web server with Firebase Hosting configuration

 firebase deploy

 creates new releases for all deployable resources in your project directory

 A project directory must have a firebase.json

 firebase database:get | database:set | database:update |

database:push | database:remove

 Database commands

Firebase CLI

Profiling the database

 Supports a database profiler tool, built into the Firebase CLI

 Logs all the activity in the database over a given period of time, then

generates a detailed report

 firebase database:profile

 Starts profiling the database

 The profiler tool aggregates the data about the database's operations and

displays the results in three primary categories:

 Speed - response time for each operation

 Bandwidth - how much data is consumed across incoming and outgoing

operations

 Unindexed queries

DEMO
https://shrouded-ridge-84643.herokuapp.com/

https://shrouded-ridge-84643.herokuapp.com/

More resources about Firebase

Official Firebase page:

 https://firebase.google.com/

Official Firebase Realtime Database page:

 https://firebase.google.com/docs/database/

https://firebase.google.com/
https://firebase.google.com/docs/database/

Thanks for your attention.
Any questions?

