Firebase

Martin Galajda, Lenka Janeckova

Infroduction

» Cloud-hosted database
» Backend-as-a-Service (Baas)
» Started as a YC11 startup, acquired by Google in 2014

= Data stored in JSON and synchronized to every connected
client

= Supports IOS, Android, C++, Web apps, REST API, Unity, ...
» Used by Shazam, Skyscanner, Booking.com, Viber, ...

Infroduction

= Other features Firebase supports:
= Storage
= Hosting
= Authenftication
= Nofifications

= Cloud functions
= Cloud messaging
= Analytics

= Remote config

= Crash reporting

How does it worke

= The clients connect directly to the database in the cloud and don’t
have to go through the application’s server

= No need to worry about the backend server, database, real-time
component (socket.io) or writing REST AP

= App is connected to Firebase through WebSockets

= The app just sends data to Firebase and it handles saving and
syncing across all connected devices / sites

= All data is synced through the single WebSocket connection

Writing data offline

= Every client connected to a Firebase database maintains its own
internal version of any active data

= Data is written to this local version first
= The Firebase client synchronizes that data on a "best-effort” basis.

= All writes to the database trigger local events immediately, before
any data is written to the server

= Once connectivity is reestablished, the app receives the set of
events so that the client syncs with the current server state

Authentication

= Built iIn email/password authentication system
= Supports OAuUth2 for Google, Facebook, Twitter and GitHub

Integrates directly into Firebase database — can be used to
control access to data

Firebase Database Rules

» Determine who has:
= read and write access to the database
= how data is structured

= what indexes exist

= These rules live on the Firebase servers and are enforced
automatically at all times

= Every read and write request will only be completed it
the rules allow .

= By default only authenticated users can read/write data

Firebase Database Rules

» reqad

= if and when data is allowed to be read by users

» write

= if and when data is allowed to be written

= validate

» what a correctly formatted value will look like, whether it has child
attributes, and the data type

» indexOn

= specifies a child tfo index to support ordering and querying

Firelbbase Database Rules Example

{
- ! i "rules”: {
= Built-in variables and functions that allow you ‘users”: {
fo refer fo other paths, server-side "Guid": {
timestamps, authenticafion information, ... " write": "Suid === auth.uid"
'
'
}
}
{
"rules”: {
"foo": {
".validate”: "newData.isString() && newData.val().length < 188"
}
}

}

Database indexes

= |ndexes are specified using the .iIndexOn rule

= Example index declaration that would index the
height and length fields for a list of dinosaurs:

{

“lambeosaurus” : { {

"height™ @ 2.1, "Tules” - {

1‘9”9:; :5;;5‘ "dinosaurs"”: {

W'E':L : 1] - 1 IF - IF 1l 1l
\ . .indexOn” : ["height”, "length”]
"stegosaurus”: { h

"height” : 4, }

"length” @ 9, }

"weight™ :© 2588
h

Structuring the database

= You need to plan for how data is going 1o be saved and
later retrieved to make that process as easy as possible

= Data is stored as JSON objects

= When you add data to the JSON tree, it becomes a

node in the existing JSON structure with an associated
key

= You can provide your own keys, such as user IDs or
semantic names, or they can be provided for you using
push()

Scaling database - sharding and dato
replication

= does not provide data replication by default

= sharding can be achieved by creating multiple firebase
Instances (projects)

= e.g. firebase instance for each aggregate entity

Structuring the database - validation

» Rules are made up of

/

{

"rules”: { . . .
/{ write is allowed for all paths Jovoscnp’r—hke expressions
".write": true, contained in a JSON document
"widget": {

// a valid widget must have attributes "color"” and "size’
// allows deleting widgets (since .validate is not applied to delete rules)

“.validate”: "newData.hasChildren([color', "size'])",
"gize": {
/f the value of "size” must be a2 number between & and 99
“.validate”: "newData.isNumber() &&

newData.val() »>= 8 &&
newData.val() <= 99"

I3
"color”: {

// the value of "color” must exist as a key in our mythical

{{ fvalid_colors/ index

“.validate”: "root.child('valid_colors/' + newData.val()).exists()"”
'

Basic usage

Initializing the Realtime Database

// Set the configuration for your app
{// TODO: Replace with your project’'s config object
var config = {
apiKey: "apiKey",
authDomain: "projectld.firebaseapp.com”,
databaseURL: "https://databaseName.fTirebaseio.com”,
storageBucket: "bucket.appspot.com”
b

firebase.initializeApp(config);

// Get a reference to the database service
var database = firebase.database();

Write operation

» Method set() saves data to a specified reference, replacing any
existing data at that path, including any child nodes

function writelUserData(userId, name, email, imagelrl) {
firebase.database().ref(users/' + userld).set({
username: name,
emall: email,
profile_picture : imagelrl
1
h

Read operation

= The value eventis fired every time data is changed at the specified
reference, including changes to child nodes

= The event callback is passed a snapshot containing all data at that
location which existed at the time of the event

var starCountRef = firebase.database().ref{ posts/" + postld + '"/starCount');
starCountRef.on(value', function(snapshot) {

updateStarCount(postElement, snapshot.val());
)

Update operation

= ypdarfe() method called on areference to the location of data

= Enables simultaneous updates to multiple locations in the JSON tree
with a single call

» Simultaneous updates made this way are atomic: either all updates
sycceed or all updates fail

// Get a key for a new Post.
var newPostkey = firebase.database().ref().child(posts’).push().key;

f/ Write the new post's data simultaneously in the posts list and the user's post list.
var updates = {}:

updates|[' /posts/’ + newPostKey] = postData;

updates[' fuser-posts/' + uid + '/' + newPostKey] = postData:

return firebase.database().ref().update{updates)

\

Read data once

= snapshot of your data without listening for changes
= once() method - it triggers once and then does not trigger again.

Delete operation

= remove() method called on areference to the location of the data

Promise

= When the data is committed to the database, sef() and update()
operations can return Promise

= A Promise represents an eventual (asynchronous) value
= When it gets resolved, .then() callback function will be called
w» if it getsrejected, .catch() callback will be called

Detach listeners

= Method off() on a database reference

Transaction operation

= When working with data that could be corrupted by
concurrent modifications

= fransaction() method takes an update function and an
optional completion callback.

» The update function takes the current state of the data
as an argument and returns the new desired state

= |f the transaction is rejected, the server returns the
current value to the client, which runs the tfransaction
again with the updated value.

= This repeats until the transaction is accepted or aborted.

Firebase CLI

= provides a variety of tools for managing, viewing, and deploying to
Firebase projects

= npm install —-g firebase-tools

= Provides a globally available firebase command available from any
terminal window

= firebase login

» connects your local machine to your Firebase account and grants
access to your projects

= firebase list
= |ists of all of your Firebase projects

= firebase init

w» steps you through setting up your project directory, including asking
which Firebase features you want to use

Firebase CLI

= firebase serve

= Starts a local web server with Firebase Hosting configuration

= firebase deploy
» creates’new releases for all deployable resources in your project directory
ject directory must have a firebase.json

firebase database:get | database:set | database:update |
database:push | database:remove

Database commands

Profiling the database

= Supports a database profiler tool, built intfo the Firebase CLI

= |Logs all the activity in the database over a given period of time, then
generates a detailed report

= firebase database:profile
= Starts profiling the database

= The profiler tool aggregates the data about the database's operations and
displays the results in three primary categories:

» Speed - response time for each operation

= Bandwidth - how much data is consumed across incoming and outgoing
operatfions

= Unindexed queries

DEMO

https://shrouded-ridge-84643.herokuapp.com/

More resources about Firebase

= Official Firebase page:

= Official Firebase Realtime Database page:

https://firebase.google.com/
https://firebase.google.com/docs/database/

Thanks for your attention.

Any questions?

