
Apache Kafka
Samuel Adámik, Ľuboš Beňo,

Viktória Tóthová

Why Kafka

Kafka decouples data pipelines
Producers

Brokers

Consumers

What is Apache Kafka
● A distributed streaming platform
● Originally developed by LinkedIn in 2010
● Open-sourced in 2011 at Apache
● Since 2014 managed by Confluent
● Written in Scala and Java
● A unified, high-throughput, low-latency platform for handling real-time

data feeds
● Real-time streaming data pipelines that reliably get data between systems

or applications
● Real-time streaming applications that transform or react to the streams of

data

Streaming platform
Has three key capabilities:

● Publish and subscribe to streams of records, similar to a message queue
or enterprise messaging system.

● Store streams of records in a fault-tolerant durable way.
● Process streams of records as they occur.

Basic concepts
● Kafka is run as a cluster on one or more servers that can span multiple

datacenters.
● The Kafka cluster stores streams of records in categories called topics.
● Each record consists of a key, a value, and a timestamp.

Kafka has 4 APIs
Topic - stored stream of records

Producer - publish a stream of records to Kafka
topics.

Consumer - subscribe to topic(s) and process the
stream of records

Stream processor - consume an input stream from
topic(s) and produce an output stream to output
topic(s)

Connector - build and run reusable producers or
consumers that connect Kafka topics to existing
applications or data systems. For example, a
connector to a relational database might capture
every change to a table.

Kafka
Architecture

Topic
● A category to which records are

published.
● Multi-subscriber (0 - N consumers)

Partition
● Ordered commit logs
● The records are assigned a sequential

id number called the offset
● Configurable retention period
● Allow scalability

Distribution
● Partitions are distributed over servers in cluster
● Each server handles data and requests for a share of partitions
● Each partition replicated for fault tolerance
● Each partition has servers called “leader and “followers”
● Leader handles all read and write requests for the partition
● Followers passively replicate the leader
● If leader fails, one follower becomes new leader.

Producers
● Publish data to topics
● Choose which record to assign to which partition within the topic

○ Round-robin (balanced load)
○ Semantic partition function (based on key in record)

Consumers
● Consumer Instances are grouped into Consumer Groups
● Each record published is delivered to one Instance
● Consumer instances can be in separate processes or on separate

machines.

Guarantees
● Messages sent by a producer to a particular topic partition will be

appended in the order they are sent. That is, if a record M1 is sent by the
same producer as a record M2, and M1 is sent first, then M1 will have a
lower offset than M2 and appear earlier in the log.

● A consumer instance sees records in the order they are stored in the log.
● For a topic with replication factor N, we will tolerate up to N-1 server

failures without losing any records committed to the log.

Consistency and Availability
● All guarantees are off if you are reading from the same partition using

two consumers or writing to the same partition using two producers

● Guarantees by Kafka
a. messages sent to a topic partition will be appended to the commit log in the order they

are sent
b. a single consumer instance will see messages in the order they appear in the log
c. a message is ‘committed’ when all in sync replicas have applied it to their log
d. any committed message will not be lost, as long as at least one in sync replica is alive

Handling writes

Handling failure 1/4

Handling failure 2/4

Handling failure 3/4

Handling failure 4/4

Use cases
● Messaging - Replacement for messaging systems (e.g. ActiveMQ, RabbitMQ)

● Website Activity Tracking - Real-time processing of site activity, page views, searches...

● Metrics
○ Operational monitoring of data, aggregating statistics from distributed applications

● Log Aggregation
○ Collecting log files from servers and putting them in a central place for processing

● Stream Processing
○ raw input data is consumed from Kafka topics and then aggregated, enriched, or

transformed into new topics for further consumption or follow-up processing

● Event Sourcing
○ style of application design where state changes are logged as a time-ordered sequence

of records

● Commit Log
○ external commit-log for a distributed system with replication between nodes

Enterprises that use Kafka

Sources
● https://kafka.apache.org/
● https://www.slideshare.net/jhols1/kafka-atlmeetuppublicv2
● https://sookocheff.com/post/kafka/kafka-in-a-nutshell/

Thank you for your attention!

