Apache Giraph

Matus Macko
Martin Schvarcbacher

Overview

e an iterative graph processing framework, built on top of Apache Hadoop
e Released: 2011
e Based on Google’s proprietary Pregel, open-source implementation

e \Written entirely in Java

Pregel

e programming model targeted to large-scale graph problems
e message passing between vertices in graph - supersteps

e user specified compute function on each vertex

e PageRank implementation is only 15 lines of code in C++

e more - https://kowshik.github.io/JPregel/pregel_paper.pdf

Features Overview

e Master computation - http://giraph.apache.org/implementation.htmi
e Sharded aggregators - http://giraph.apache.org/aggregators.html
e Edge-oriented input/output - http://giraph.apache.org/io.html

e Out-of-core computation - http://giraph.apache.org/ooc.html

Why select Giraph

e Used internally by Facebook on 4 trillion edges, time to process = 4 minutes
o since version 1.0.0 Apache Giraph provides all of the described features
o https://www.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a
-trillion-edges/10151617006153920/

e Open-source, in active development, regular contributions from FB engineers

You need to do data ANALYTICS on graphs and not direct graph storage

Used by: Apache Software Foundation, Facebook

https://www.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a-trillion-edges/10151617006153920/
https://www.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a-trillion-edges/10151617006153920/
https://www.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a-trillion-edges/10151617006153920/

Technology Underneath

e Apache Hadoop:

o Hadoop File System

m All data needs to be in
HDFS for processing
o Allows easy task parallelization
o Giraph jobs run as a MapReduce
job
e Java as a primary language for
processing

BSP mode
PHASE 1 PHASE 2 PHASE 3
Message °
Master | Master | Heh an:ge ~ Master }
} h
Warker 1 Warker 1) — [Worker 1
In memor Se——
Input r_/ ¥ -_ '-—-—") Output
Format graph — Format
e Warker 2 model Worker 2 | m— Worker 2
Input- | | w___-/
Splits 4'

!

tiny_graph tt HDFS Analysis results

MapReduce l
%

How Apache Giraph works

e all data and workload distribution related details
are hidden behind an easy-to-use API

e a worker node or a slave node is a host
performing computations and storing data in
HDFS

e Giraph algorithm is an iterative execution of
“super-steps”

e BSP - Bulk synchronous parallel”

fi

ﬁ:\gl age |
:

final a

partial agi: inal agg |
partial agg 2 final agg 2
' ‘

partial azg 7, final agg 0
d— - —

)
-

partial aj;"
-

partial 7g2 0 final agg 0

partial 7gg | final agg |

partial agg 2 final age 2

Vertex-centered approach

e Iterative model for each connected(nearby) vertices
e All data divided into partitions for iterative and parallel approach
e IBM researchers looking into graph-centric approach (Giraph++)
o Published a theoretical implementation paper in 2014
o Progress stalled in 2015

o Paper link: http://researcher.watson.ibm.com/researcher/files/us-ytian/giraph++.pdf

Downsides of Giraph

e No custom/embedded query language separate from API, nothing like Neo4J Cypher (yet)
o Have to do everything from Java, including the algorithm design
e Due to MapReduce nature, all data needs to be known beforehand
o Cannot add data to an ongoing MapReduce job!
e Each new run starts with importing data into Giraph
o Extra processing time when compared to storing data directly in a graph DB with querying
support
e No realtime responses, not interactive
o Even simple traversals take at least 10-20 seconds
m Add data to HDFS and distribute
m Run MapReduce job
m Get output from HDFS
m Parse output
e Low quality documentation, JavaDoc often only 1 line to describe a class
e No GUI/ web interface

Computation step:

e Computation step:

(©)

©)

In each superstep, each active vertex invokes the Compute method provided by the
user.

The method implements the graph algorithm that will be executed on the input graph

e The Compute method:

@)

©)

receives messages sent to the vertex in the previous superstep,
computes using the messages, and the vertex and outgoing edge values,
m can result in modifications to the values of edges or current vertex
may send messages to other vertices.
does not have direct access to the values of other vertices and their outgoing edges.

Inter-vertex communication occurs by sending messages.

Superstep barrier

Every operation happens as part of a superstep

Inside each superstep block all active vertices are processed in parallel

can process different areas simultaneously

Vertex updating happens via message passing

After all active vertices are processed, a new superstep can begin

Only vertices which have received a message in previous step are activated again
Once all vertices have halted, overall computation halts and the result is returned
Uses Bulk Synchronous Parallel Model for synchronization of all vertices

—_— |— | >
Bulk -)"'I >

Synchronous < > -~
Parallel i >
— — I T [
I

— >

Inputting data into Giraph (1)

e Giraph by itself is not meant for graph data storage, only processing and then
outputting the resulting data somewhere else
e Data stored in (No)SQL database
Using Apache Gora for data retrieval and pre-processing:
o Supports: Column stores, Key-Value stores, Document stores, RDBMS
o Requires JSON schema for data
o Processes data from DB into usable format for Giraph

f‘ﬂ“\‘ For putting data INTO Giraph
/ \
Ka\ GoraVertexinputFormat {
/.7‘ \‘ Vertex<i, V, E> transformVertex|Otject goraObject)
/ \ '
JAAREEN \ LR A RO A
V N\ GoraEdgetnputFarmar | . ‘.' ' “
\ (A | ahe
f \ Edge<l, E> transiormEdge{Object goralibject) $ ‘ . ‘
™ \ ! @B
GORA N\ Y\ TS o
/ \ .‘-‘ o'l
- \ ne vase
| / \\,
i _,f \ GaraVerexOutputFarmat | .Q‘ ".Q
@ V4 a‘-\k Persistent zetGeraVertes{Vernesch, V., E> vertes) ’. ‘ ..
HBase - Cassandra _;"A‘ K‘x <: Object gerGarkey(Vertesd, V, E»vertes): @ =; .‘ 9
Solr - RDEMs - Accurmulo / "‘h i - ..k '..
MongoDB - Oracle / \
NoSQL-... 7 v r AN\ \ T W
_if | PR | :-_i_ﬂ'\:»': | ‘ 3 ol {“f ‘ Ki\ * Pers Edge|l sroid, V srrValue, Edgecl, E> edze): A P A C H E
]J} i i - dear . e s 'j-s‘ “A'\ Object getGarakey|l sroid, V sreValue, Edzecl, F>edge
/SRy | GIRAPH
L \

For taking data OUT of Glraph

Inputting data into Giraph (2)

e Hadoop input/output formats:
o Adjacency list with data about the vertex and outgoing edges stored as a string
m can represent anything: integers, CSV or JSON
o Requires processing string data at runtime
m In Java: writing your own InputFormat class to parse the file
m Returns Java primitives/objects
o More code to write than Gora, but less technological overhead (only text files needed)

o Example of input on next slide

Example Input Data

FORMAT: [Vertex ID, Vertex Data, [[Connected vertex ID, Edge Data]]]
Adjacency list representation.
Example input (integer weighted edges):

(0,0, 0[1,1],[3,3111

(1,0, [000,1],[2,2],13,1]11]

(2,0, [[1,21,04,411] ID Vertex Data Edge Data
[3,0,[00,31,[1,11,1[4,4]]]

[4,0,[[3,4],[2,4]]]
Java datatype: Vertex<LongWritable, DoubleWritable, DoubleWritable>

You can always write your own custom (JSON) parser for the data

Edge and Vertex Data

e Every edge and vertex can carry any information
e Graph components must be of homogeneous data types
o Data type must subclass Writable
o Vertex, Edge and Message can be of a different type
e Graph data type must be declared in Java before running jobs

o Specified in Java or as Hadoop input parameter

Java API: VertexlnputFormat + VertexOutputFormat

e VertexinputFormat [3]
o Abstract superclass
o You need to specify how to handle input data file
o One line is one vertex, encoded as UTF8 string
o HDFS: file can be split into multiple chunks, therefore each line needs to be independent

o All other information encoding left to the user

e VertexOutputFormat [3]
o Abstract superclass

o Determines how each vertex with its data and connected edges will be outputted

Message passing

e Sometimes you need to send / share data with vertices not directly connected
e You only have direct access to outbound connected vertices and edge data
e Message passing transparently solves this issue
e Messages are passed for a specific vertex ID
e How it works internally:
o Edge may be marked as “done” by voteToHalt(), that is it will not be re-computed
again unless needed
o By sending a message it is again marked “not done”
o In the next computation superstep, all “not done” vertices are computed again

o All vertices must be halted for Giraph to halt

Simple graph traversal: distance from source

1 Bpublic void compute (Iterable<DoubleWritable> messages) {
% double minDist = isSource() ? 0d : Double.MAX VALUE;
3 = for (DoubleWritable message : messages) {

4 minDist = Math.min(minDist, message.get()) ;

O }

6 = if (minDist < getValue() .get()) {

setValue (new DoubleWritable (minDist)) ;
for (Edge<LongWritable, FloatWritable> edge

'8
{1}
il

O CC

sendMessage (edge.getTargetVertexId(),
new DoubleWritable(distance)) ;

i I e

(78]

}
voteToHalt () ;

10 T

getEdges())

double distance = minDist + edge.getValue() .get():;

{

Source: [4]

Simple Graph Traversal

vertices with values

meSsSsages

4 superstep barriers

Source: [4]

Giraph Setup

e Docker setup (full stack):
o https://hub.docker.com/r/luwsampal/giraph-docker/
o Contains:
m Apache Hadoop
m Apache Giraph
m Java SDK for compiling and deploying Giraph jobs
e Native installation (non-docker):
o http://giraph.apache.org/quick_start.html

o Install Java, Hadoop, Giraph

https://hub.docker.com/r/uwsampa/giraph-docker/
https://hub.docker.com/r/uwsampa/giraph-docker/
http://giraph.apache.org/quick_start.html
http://giraph.apache.org/quick_start.html

Apache TinkerPop

Provides a common API for all supported Graph S
Databases and processors [9] -
Core component is the Gremlin traversal language Haerthms
Giraph supports Gremlin via Hadoop-Gremlin a Pt
o Allows querying data sent to Giraph in an interactive —
Gremlin shell | anoee
o Still vertex-centered approach, but some ideas are Prodessts
easier to express in Gremlin than in Java Gt
Example: v.outE(‘knows’).inV filter{it.age > 30}.name e

Summary

e Giraph is a graph processing engine

e Backed by Hadoop

e Written in Java, has API support for other languages
o TinkerPop (Gremlin) for non-Java queries

e Primary use case:

o Fast big data processing when storage is backed by another DB

Sources

[1] http://tinkerpop.apache.org/providers.html

[2] http://synsem.com/SeaNode-2014-06-25/images/BSPvsForkJoin.svg

[3] http://giraph.apache.org/io.html

[4] https://cwiki.apache.org/confluence/display/GIRAPH/Shortest+Paths+Example
[5] http://tinkerpop.apache.org/docs/3.0.1-incubating/

[6] https://research.googleblog.com/2009/06/large-scale-graph-computing-at-google.html

http://tinkerpop.apache.org/providers.html
http://synsem.com/SeaNode-2014-06-25/images/BSPvsForkJoin.svg
http://giraph.apache.org/io.html
https://cwiki.apache.org/confluence/display/GIRAPH/Shortest+Paths+Example
http://tinkerpop.apache.org/docs/3.0.1-incubating/

