
Apache Giraph
Matúš Macko

Martin Schvarcbacher



Overview
● an iterative graph processing framework, built on top of Apache Hadoop

● Released: 2011

● Based on Google’s proprietary Pregel, open-source implementation

● Written entirely in Java



Pregel
● programming model targeted to large-scale graph problems

● message passing between vertices in graph - supersteps

● user specified compute function on each vertex

● PageRank implementation is only 15 lines of code in C++

● more - https://kowshik.github.io/JPregel/pregel_paper.pdf



Features Overview
● Master computation - http://giraph.apache.org/implementation.html

● Sharded aggregators - http://giraph.apache.org/aggregators.html

● Edge-oriented input/output - http://giraph.apache.org/io.html

● Out-of-core computation - http://giraph.apache.org/ooc.html 



Why select Giraph
● Used internally by Facebook on 4 trillion edges, time to process = 4 minutes

○ since version 1.0.0 Apache Giraph provides all of the described features

○ https://www.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a

-trillion-edges/10151617006153920/

● Open-source, in active development, regular contributions from FB engineers

● You need to do data ANALYTICS on graphs and not direct graph storage

● Used by: Apache Software Foundation, Facebook

https://www.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a-trillion-edges/10151617006153920/
https://www.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a-trillion-edges/10151617006153920/
https://www.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a-trillion-edges/10151617006153920/


Technology Underneath
● Apache Hadoop:

○ Hadoop File System
■ All data needs to be in 

HDFS for processing
○ Allows easy task parallelization
○ Giraph jobs run as a MapReduce 

job
● Java as a primary language for 

processing



How Apache Giraph works
● all data and workload distribution related details 

are hidden behind an easy-to-use API
● a worker node or a slave node is a host 

performing computations and storing data in 
HDFS

● Giraph algorithm is an iterative execution of 
“super-steps”

● BSP - Bulk synchronous parallel�



Vertex-centered approach
● Iterative model for each connected(nearby) vertices

● All data divided into partitions for iterative and parallel approach

● IBM researchers looking into graph-centric approach (Giraph++)

○ Published a theoretical implementation paper in 2014

○ Progress stalled in 2015

○ Paper link: http://researcher.watson.ibm.com/researcher/files/us-ytian/giraph++.pdf



Downsides of Giraph
● No custom/embedded query language separate from API, nothing like Neo4J Cypher (yet)

○ Have to do everything from Java, including the algorithm design
● Due to MapReduce nature, all data needs to be known beforehand

○ Cannot add data to an ongoing MapReduce job!
● Each new run starts with importing data into Giraph

○ Extra processing time when compared to storing data directly in a graph DB with querying 
support

● No realtime responses, not interactive
○ Even simple traversals take at least 10-20 seconds

■ Add data to HDFS and distribute
■ Run MapReduce job
■ Get output from HDFS
■ Parse output

● Low quality documentation, JavaDoc often only 1 line to describe a class
● No GUI / web interface



Computation step:
● Computation step:

○ In each superstep, each active vertex invokes the Compute method provided by the 
user.

○ The method implements the graph algorithm that will be executed on the input graph
● The Compute method:

○ receives messages sent to the vertex in the previous superstep,

○ computes using the messages, and the vertex and outgoing edge values, 

■ can result in modifications to the values of edges or current vertex

○ may send messages to other vertices.

○ does not have direct access to the values of other vertices and their outgoing edges. 

○ Inter-vertex communication occurs by sending messages.



Superstep barrier
● Every operation happens as part of a superstep
● Inside each superstep block all active vertices are processed in parallel
● can process different areas simultaneously
● Vertex updating happens via message passing
● After all active vertices are processed, a new superstep can begin
● Only vertices which have received a message in previous step are activated again
● Once all vertices have halted, overall computation halts and the result is returned
● Uses Bulk Synchronous Parallel Model for synchronization of all vertices



Inputting data into Giraph (1)
● Giraph by itself is not meant for graph data storage, only processing and then 

outputting the resulting data somewhere else
● Data stored in (No)SQL database
● Using Apache Gora for data retrieval and pre-processing:

○ Supports: Column stores, Key-Value stores, Document stores, RDBMS
○ Requires JSON schema for data
○ Processes data from DB into usable format for Giraph



Inputting data into Giraph (2)

● Hadoop input/output formats:

○ Adjacency list with data about the vertex and outgoing edges stored as a string

■ can represent anything: integers, CSV or JSON

○ Requires processing string data at runtime

■ In Java: writing your own InputFormat class to parse the file

■ Returns Java primitives/objects

○ More code to write than Gora, but less technological overhead (only text files needed)

○ Example of input on next slide



Example Input Data
FORMAT: [Vertex ID, Vertex Data, [[Connected vertex ID, Edge Data]]] 

Adjacency list representation. 

Example input (integer weighted edges):

[0,0,[[1,1],[3,3]]]

[1,0,[[0,1],[2,2],[3,1]]]

[2,0,[[1,2],[4,4]]]

[3,0,[[0,3],[1,1],[4,4]]]

[4,0,[[3,4],[2,4]]]

Java data type: Vertex<LongWritable, DoubleWritable, DoubleWritable>

You can always write your own custom (JSON) parser for the data

ID Vertex Data Edge Data



Edge and Vertex Data

● Every edge and vertex can carry any information

● Graph components must be of homogeneous data types

○ Data type must subclass Writable

○ Vertex, Edge and Message can be of a different type

● Graph data type must be declared in Java before running jobs

○ Specified in Java or as Hadoop input parameter



Java API: VertexInputFormat + VertexOutputFormat
● VertexInputFormat [3]

○ Abstract superclass

○ You need to specify how to handle input data file

○ One line is one vertex, encoded as UTF8 string

○ HDFS: file can be split into multiple chunks, therefore each line needs to be independent

○ All other information encoding left to the user

● VertexOutputFormat [3]

○ Abstract superclass

○ Determines how each vertex with its data and connected edges will be outputted



Message passing
● Sometimes you need to send / share data with vertices not directly connected

● You only have direct access to outbound connected vertices and edge data

● Message passing transparently solves this issue

● Messages are passed for a specific vertex ID

● How it works internally:

○ Edge may be marked as “done” by voteToHalt(), that is it will not be re-computed 

again unless needed

○ By sending a message it is again marked “not done”

○ In the next computation superstep, all “not done” vertices are computed again

○ All vertices must be halted for Giraph to halt



Simple graph traversal: distance from source

Source: [4]



Simple Graph Traversal

Source: [4]



Giraph Setup
● Docker setup (full stack):

○ https://hub.docker.com/r/uwsampa/giraph-docker/

○ Contains: 

■ Apache Hadoop

■ Apache Giraph

■ Java SDK for compiling and deploying Giraph jobs

● Native installation (non-docker):

○ http://giraph.apache.org/quick_start.html

○ Install Java, Hadoop, Giraph

https://hub.docker.com/r/uwsampa/giraph-docker/
https://hub.docker.com/r/uwsampa/giraph-docker/
http://giraph.apache.org/quick_start.html
http://giraph.apache.org/quick_start.html


Apache TinkerPop
● Provides a common API for all supported Graph 

Databases and processors [5]

● Core component is the Gremlin traversal language

● Giraph supports Gremlin via Hadoop-Gremlin

○ Allows querying data sent to Giraph in an interactive 

Gremlin shell

○ Still vertex-centered approach, but some ideas are 

easier to express in Gremlin than in Java

● Example: v.outE('knows').inV.filter{it.age > 30}.name



Summary
● Giraph is a graph processing engine

● Backed by Hadoop

● Written in Java, has API support for other languages

○ TinkerPop (Gremlin) for non-Java queries 

● Primary use case:

○ Fast big data processing when storage is backed by another DB



Sources
[1] http://tinkerpop.apache.org/providers.html

[2] http://synsem.com/SeaNode-2014-06-25/images/BSPvsForkJoin.svg

[3] http://giraph.apache.org/io.html

[4] https://cwiki.apache.org/confluence/display/GIRAPH/Shortest+Paths+Example 

[5] http://tinkerpop.apache.org/docs/3.0.1-incubating/

[6] https://research.googleblog.com/2009/06/large-scale-graph-computing-at-google.html

http://tinkerpop.apache.org/providers.html
http://synsem.com/SeaNode-2014-06-25/images/BSPvsForkJoin.svg
http://giraph.apache.org/io.html
https://cwiki.apache.org/confluence/display/GIRAPH/Shortest+Paths+Example
http://tinkerpop.apache.org/docs/3.0.1-incubating/

