
Aleš Kopecký - Martin Vrábel - Norbert Fabián



What is Apache Kafka?
● Distributed streaming platform
● Originated in 2010 at LinkedIn, in 2011 open sourced at Apache and 

now managed by Confluent group
● Written in Java and Scala
● Fast, scalable, distributed, fault tolerance
● Real-time streaming data pipelines between systems/applications
● Real-time reaction or transformation of streams of data
● Uses Apache Zookeeper 

○ as a distributed store,
○ for distributed configuration service,
○ for synchronization between nodes









Used by



Terminology

● Topics: stored streams of records 

● Producers: publishing stream of 
records to topics

● Consumers: subscribing topics 
and processing records

● Stream processor: consume - 
transform - produce



Topic
● Category
● Multisubscriber (0 - n consumers)
● Partitioned log
● Retention period

Partition
● Ordered sequence of records
● Record has sequential ID - offset



Producers
● Publishing data to topics (choosing the partition) 
● Responsible for choosing which record to assign to which partition within the 

topic
● Round-robin (balance load)
● Semantic partition function (based on keys in records)



Consumer groups
● Generalize queuing and publish-subscribe
● Consist of consumer instances
● Record from topic is delivered to on consumer instance from a group



Replication
● Configurable, based on data importance.
● Automated replica management.



Replication
● Since each machine is responsible for each write, throughput of the system 

as a whole is increased.
● When communicating with a Kafka cluster, all messages are sent to the 

partition’s leader.
● The leader is responsible for writing the message to its own in sync replica 

and for propagating the message to additional replicas on different brokers.
● Each replica acknowledges that they have received the message and can 

now be called in sync.



Replication



Replication



● When replica dies, nothing happens.
● When leader dies last, there are 2 solutions:

○ Wait for leader to back up and as the replicas are brought back online they will be made 
in sync with the leader.

○ Elect the first broker to come back up as the new leader => all data written between the 
time where this broker went down and when it was elected the new leader will be lost.

replica fails
Handling Failures



Handling Failures
leader fails

● The Kafka controller will detect the loss of the leader and elect a new 
leader from the pool of in sync replicas.

● This may take a few seconds and result in LeaderNotAvailable errors 
from the client.

● Producers and consumers must handle this situation on their own.



Consistency as a Kafka Client
PRODUCERS:

● wait for all in sync replicas to acknowledge the message
● wait for only the leader to acknowledge the message
● do not wait for acknowledgement

CONSUMERS:

● receive each message at most once
● receive each message at least once
● receive each message exactly once



Consumers

● Consumer reads data from a partition, commits the offset that it has 
read, and then processes the message. 

● If the consumer crashes between committing the offset and 
processing the message it will restart from the next offset without 
ever having processed the message. 

● This would lead to potentially undesirable message loss.

receive each message at most once



Consumers

● For at least once delivery, the consumer reads data from a partition, 
processes the message, and then commits the offset of the message it 
has processed.

● This leads to duplicate messages in downstream systems but no data 
loss.

receive each message at least once



Consumers

● Exactly once delivery is guaranteed by having the consumer process a 
message and commit the output of the message along with the offset to a 
transactional system. 

● If the consumer crashes it can re-read the last transaction committed and 
resume processing from there. 

● This leads to no data loss and no data duplication. 
● In practice however, exactly once delivery implies significantly decreasing 

the throughput of the system as each message and offset is committed as 
a transaction.

receive each message exactly once



Performance
● highly influenced by clients
● benchmark comparison↗ of Apache Kafka and RabbitMQ 

https://engineering.linkedin.com/kafka/benchmarking-apache-kafka-2-million-writes-second-three-cheap-machines
https://engineering.linkedin.com/kafka/benchmarking-apache-kafka-2-million-writes-second-three-cheap-machines
https://engineering.linkedin.com/kafka/benchmarking-apache-kafka-2-million-writes-second-three-cheap-machines


Kafka

→ 2 models:

Queuing

Sender Receiver
Message queue

Publish-subscribe system

Sender Receiver

Receiver

Receiver

Message queue

as messaging system



Kafka

● data written to disk
● replicated for fault-tolerance
● scaling of disk structures
● producer waits for acknowledgement of write
● special purpose distributed filesystem

as storage system



Kafka

● usage of pipelining

● from simple processing with producer/consumer API to complex 
transformations:

Streams API
⇒ built-in powerful and lightweight library for stream data processing and analyzing, 

available from v0.10

processing & transformation

for stream processing



Use cases
● Messaging

○ replacement for message broker (ActiveMQ, RabbitMQ...)

● Website activity tracking
○ real-time processing and monitoring of page views, searches, user interactions..

● Metrics
○ produce centralized feeds of statistical data from distributed applications

● Log Aggregation
○ abstraction for lower-latency processing of logs from multiple data sources

● Microservices
● Event Sourcing

○ style of application design where state changes are logged as sequence of records

● Commit Log
○ external commit log from distributed system with replication between nodes



Demo



Questions?



Thank you for the attention
Aleš Kopecký - Martin Vrábel - Norbert Fabián


