g EACHE F k
A distributed sfrgoming plattform

Ales Kopecky - Martin Vrabel - Norbert Fabian

What is Apache Kafka? §€ kafka

e Distributed streaming platform

Originated in 2010 at LinkedIn, in 2011 open sourced at Apache and
now managed by Confluent group
Written in Java and Scala

Fast, scalable, distributed, fault tolerance
Real-time streaming data pipelines between systems/applications
Real-time reaction or transformation of streams of data

Uses Apache Zookeeper
o as a distributed store,
o for distributed configuration service,
o for synchronization between nodes

--:é:onfluent

Monitoring

Splunk

Apps

Apps and Services

MQ

—

Apps

App

Transforms

Apps and Services Apps and Services
OLTP Queries
TTP__HTTP
il \
Key-value
Relational Relational Apps Apps Stora :
Databases Databases Log Aggregation
CSV Dump ﬂu
Cache T
ey [., rsync
Poll For Changes oDS
I \ Hadoop |*—igad ey
App App
Relational Transforms
e R e Data
Caches & Warshouse ETL
Derived Stores

Apps Apps Apps Apps

=

S S
Social Key-Value OLAP
Graph Storage

75
sowen |
Monitoring <—
g Kafka:
z Streaming |-
59:““‘5& «—] Platform
rau prEee
Stream
Haaktims 4| Processing
Analytics T
(= =y

Hadoop Teradata

Used by

NETFL|X %Spotifw

U - R ' PayPal

Walmart ebay 'C||'S' é'c;

: §€ kafka
Terminology
Producers

e Topics: stored streams of records

App App App

e Producers: publishing stream of — \ l / App
/

records to topics Kafka Stream
Connectors | ciyster |_ processors
e

e Consumers: subscribing topics T A
and processing records / l \

App App App

e Stream processor. consume -

Consumers
transform - produce

Topic

e Category

e Multisubscriber (0 - n consumers)
e Partitioned log

e Retention period

Partition

e Ordered sequence of records

e Record has sequential ID - offset

Partition
0

Partition
1

Partition
2

Old

Anatomy of a Topic

§SMﬂhJ

0

1

2

3

4

5

&

7

8

9

—
i

1
-3 \
_
/Writes

=
i

= Mew

kafka
Producers §g

e Publishing data to topics (choosing the partition)

e Responsible for choosing which record to assign to which partition within the
topic

e Round-robin (balance load)

e Semantic partition function (based on keys in records)

Consumer groups

Generalize queuing and publish-subscribe

Consist of consumer instances
Record from topic is delivered to on consumer instance from a group

Kafka Cluster

PO

[

server 1
F’S—‘

A
25 S

Server 2
! P1 || P2 \

Z

Cﬁ c2

Consumer Group A

AN

C3

X
C4 C5 C6

Consumer Group B———

§g kafka

Replication

e Configurable, based on data importance.
e Automated replica management.

Leader (red) and replicas (blue)

— Broker 1 —— — Broker 2 — Broker 3

Partition 0 Partition 0 Partition O

Partition 1

Partition 2 Partition 2

Replication §g atka

Since each machine is responsible for each write, throughput of the system
as a whole is increased.

When communicating with a Kafka cluster, all messages are sent to the
partition’s leader.

The leader is responsible for writing the message to its own in sync replica
and for propagating the message to additional replicas on different brokers.
Each replica acknowledges that they have received the message and can
now be called in sync.

Replication

Leader (red) and replicas (blue)

Client

write
— Broker 1 — Broker 2 —M — Broker 3

Partition 0 replica write Partition 0 Partition 0

replica write _3
Partition 1

"

A

Replication

Leader (red) and replicas (blue)

l

Client

— Broker 1

write _ Prokar 2

< replica write Partition 1 -replica write _}

— Broker 3

Partition 0

: : kafka
Handling Failures §g
replica fails

e When replica dies, nothing happens.

e \When leader dies last, there are 2 solutions:
o Wait for leader to back up and as the replicas are brought back online they will be made
in sync with the leader.
o Elect the first broker to come back up as the new leader => all data written between the
time where this broker went down and when it was elected the new leader will be lost.

: : kafka
Handling Failures §@
leader fails

e The Kafka controller will detect the loss of the leader and elect a new
leader from the pool of in sync replicas.

e This may take a few seconds and result in LeaderNotAvailable errors
from the client.

e Producers and consumers must handle this situation on their own.

Consistency as a Kafka Client

PRODUCERS:

o wait for all in sync replicas to acknowledge the message
o wait for only the leader to acknowledge the message
o do not wait for acknowledgement

CONSUMERS:

e receive each message at most once
e receive each message at least once
e receive each message exactly once

&3 kafka
Consumers
receive each message at most once

e Consumer reads data from a partition, commits the offset that it has
read, and then processes the message.

e [f the consumer crashes between committing the offset and
processing the message it will restart from the next offset without
ever having processed the message.

e This would lead to potentially undesirable message loss.

&3 kafka
Consumers
receive each message at least once

e For at least once delivery, the consumer reads data from a partition,
processes the message, and then commits the offset of the message it

has processed.
e This leads to duplicate messages in downstream systems but no data

loss.

&3 kafka
Consumers
receive each message exactly once

e Exactly once delivery is guaranteed by having the consumer process a
message and commit the output of the message along with the offset to a
transactional system.

e [f the consumer crashes it can re-read the last transaction committed and
resume processing from there.

e This leads to no data loss and no data duplication.

e In practice however, exactly once delivery implies significantly decreasing
the throughput of the system as each message and offset is committed as
a transaction.

Performance

e highly influenced by clients
e benchmark comparison” of Apache Kafka and RabbitMQ

https://engineering.linkedin.com/kafka/benchmarking-apache-kafka-2-million-writes-second-three-cheap-machines
https://engineering.linkedin.com/kafka/benchmarking-apache-kafka-2-million-writes-second-three-cheap-machines
https://engineering.linkedin.com/kafka/benchmarking-apache-kafka-2-million-writes-second-three-cheap-machines

Kafka g8 kofka

as messaging system

— 2 models:

Receiver

Sender —»(:O—» Receiver Sender

Message queue

Receiver

Message queue

Receiver

Queuing Publish-subscribe system

Kafka

as storage system

data written to disk

replicated for fault-tolerance

scaling of disk structures

producer waits for acknowledgement of write
special purpose distributed filesystem

Kafka g8 katke

for stream processing

e usage of pipelining

> BB

from simple processing with producer/consumer API to complex
transformations:

o

processing & transformation

I
I
I
I

N

Streams API

= built-in powerful and lightweight library for stream data processing and analyzing,

available from v0.10

§@ kafka
Use cases

e Messaging
o replacement for message broker (ActiveMQ, RabbitMQ...)

e \Website activity tracking
o real-time processing and monitoring of page views, searches, user interactions..

e Metrics
o produce centralized feeds of statistical data from distributed applications

e Log Aggregation
o abstraction for lower-latency processing of logs from multiple data sources
e Microservices
e Event Sourcing
o style of application design where state changes are logged as sequence of records

e Commit Log
o external commit log from distributed system with replication between nodes

Demo

Questions?

katka

A distributed streaming platform

Thank you for the attention

Ales Kopecky - Martin Vrabel - Norbert Fabian

